
Deep Interactive Evolutionary
3D Modelling

M.Sc. in Software Development

Master's Thesis

Authors:
Adrian Westh (adwe@itu.dk)
Simon Krabbe Munck (skra@itu.dk)
Supervisor:
Sebastian Risi (sebr@itu.dk)

June 03, 2019

Deep Interactive Evolutionary 3D
Modelling

A Study in Deep Interactive Evolution and Its Application
in the 3D Modelling Domain

Authors
Adrian Westh (adwe@itu.dk)

Simon Krabbe Munck (skra@itu.dk)

Supervisor
Sebastian Risi (sebr@itu.dk)

M.Sc. in Software Development

Copenhagen, June 03, 2019

Acknowledgements
First, we would like to express our sincere gratitude to our advisor, Associate Professor
Dr. Sebastian Risi, for the continuous support in regards to our master’s thesis - for
his patience, motivation and knowledge. His guidance greatly assisted this work.

Second, we must acknowledge the main location for both writing this master’s thesis
and developing the end product: Analog, the student orchestrated café at ITU. A café
whose delicious coffee we would not have been without.

Lastly, three cheers to all the volunteers participating in the user testing and Sofia for
proof reading without having any knowledge on the subject.

v

Declaration of Authorship
We, Adrian WESTH (Student No.: 12456) and Simon Krabbe MUNCK (Student No.:
12451), declare that this Master’s Thesis titled ”Deep Interactive Evolutionary 3D
Modelling” and the work presented in it are our own. We confirm that:

• This work was done wholly or mainly while in candidature for a research degree
at this University.

• Where any part of this thesis has previously been submitted for a degree or any
other qualification at this University or any other institution, this has been clearly
stated.

• Where we have consulted the published work of others, this is always clearly
attributed.

• Where we have quoted from the work of others, the source is always given. With
the exception of such quotations, this thesis is entirely our own work.

• We have acknowledged all main sources of help.

• Where the thesis is based on work done by ourselves jointly with others, we
have made clear exactly what was done by others and what we have contributed
ourselves.

Signed:
Date: June 03, 2019

Abstract
This master’s thesis introduces Deep Interactive Evolutionary 3D Modelling (DeepIE3D)
as a novel alternative to traditional 3D modelling. DeepIE3D is an extended imple-
mentation of the Deep Interactive Evolution (DeepIE) approach, where the artifacts
undergoing evolution are 3D voxel models. The DeepIE approach is a combination
of generative adversarial networks (GAN) and interactive evolutionary computing. A
GAN trained on a specific domain provides a generative model which enables a map-
ping of latent vectors to artifacts. The latent space used for artifact generation is
well suited for evolutionary control. Exposing this evolutionary control to end users
makes creating artifacts an intuitive process which mitigates user fatigue. The specific
GAN framework used in DeepIE3D is PacWGAN-GP2. This framework ensures stable
training and a generator able to produce a wide range of different artifacts. Alongside
the DeepIE approach, this master’s thesis introduces an alternative novel approach
utilizing evolutionary principles. Furthermore, the benefits of adding Novelty Search
(NS) to DeepIE are explored.

The main finding in this master’s thesis is that the DeepIE approach successfully
can be applied to 3D modelling. User testing reveals that end users are able to create
subjectively satisfying 3D models: Both with the original approach and the novel ap-
proach introduced. NS in latent space does not yield any benefits, but NS in behavioral
space does. However, NS in behavioral space is too computationally heavy.

Lastly, DeepIE3D is useful in practice: 3D models created via the publicly exposed
web application can be downloaded as STL files and thus 3D printed.

Contents

1. Introduction 1

2. Background & Related Work 3
2.1. Generative Adversarial Networks . 3

2.1.1. Distances . 3
2.1.2. Original Generative Adversarial Networks 4
2.1.3. Deep Convolutional Generative Adversarial Networks 4
2.1.4. 3D Generative Adversarial Networks 5
2.1.5. Wasserstein Generative Adversarial Networks 6
2.1.6. PacGAN . 7

2.2. Evolution . 7
2.2.1. Deep Interactive Evolution . 7
2.2.2. Novelty Search . 9

3. Data 10

4. Approach & Implementation 12
4.1. Generative Adversarial Networks . 12

4.1.1. Architecture . 12
4.1.2. Training Ratios . 13
4.1.3. Loss Functions . 15
4.1.4. Modes and Overfitting . 16
4.1.5. Optimizer . 17
4.1.6. Hyperparameters . 17

4.2. Evolution . 19

5. Web Application 22
5.1. Technologies and Frameworks . 22
5.2. Evolution . 23
5.3. User Interface . 24

6. User Testing 27
6.1. Motivation . 27
6.2. Approach . 27

viii Contents

7. Results 30
7.1. Evolution . 30

7.1.1. Mutation . 30
7.1.2. Crossover . 30
7.1.3. Novelty Search . 30

7.2. User Testing . 35
7.3. 3D Printing . 40

8. Analysis & Discussion 42
8.1. Generative Adversarial Networks . 42

8.1.1. Training . 42
8.1.2. 3D Model Distribution . 45

8.2. Evolution . 47
8.2.1. Mutation & Crossover . 47
8.2.2. Novelty Search . 48

8.3. User Testing . 50

9. Future Work 55

10.Conclusion 57

Bibliography 58

A. Behavioral Novelty Search 61

B. Latent Vectors Used in Training Analysis 63

C. User Testing: Questionnaire 67

D. User Testing: Answers 81

E. Network Gradients 98

List of Figures

2.1. An example of a generator in a DCGAN. This generator generates 2D
image samples. It has no pooling or fully connected layers, but instead
uses striding to upsample. Furthermore, it connects the input directly
to the highest convolutional features (image from Radford et al. [1]) . . 5

2.2. Overview of the DeepIE approach in four steps constituting a cycle:
First, a pre-trained generator is passed latent vectors to produce arti-
facts. Second, a user selects a range of artifacts based on subjective
satisfaction. Third, the latent vectors associated with the selected ar-
tifacts are passed on. Fourth, the latent variables are evolved with a
mutation rate determined by the user (image from Bontrager et al. [2]) 9

3.1. Three 3D models from different training sets. Each model is an example
from a domain of training data . 10

3.2. A comparison of an original 3D model (a) and its downscaled 3D model
(b) . 11

4.1. 3D-GAN generator architecture. A latent vector z is mapped to a 3D
matrix representing a 3D object. The boxes between are volumetric
fully convolutional layers (image from Wu et al. [3]) 13

4.2. Excerpt of the original DeepIE algorithm (image from Bontrager et al.
[2]) . 19

5.1. Overview of the DeepIE3D approach in four steps constituting a cy-
cle: First, a pre-trained generator is passed latent vectors to produce
artifacts. Second, a user either a) selects a range of artifacts based on
subjective satisfaction, or b) customizes the next evolutionary genera-
tion. Third, the latent vectors associated with the selected artifacts are
passed on. Fourth, the latent variables are evolved based on the evolu-
tionary approach used with a mutation rate determined by the user. In
the second step, choosing a) corresponds to Figure 2.2, while choosing
b) corresponds to the novel custom approach 24

5.2. The UI of DeepIE3D in Normal mode. The red circle indicates actions
available . 25

5.3. The UI of DeepIE3D in Advanced mode. The red circles indicate differ-
ences from Normal mode and actions available 25

x List of Figures

5.4. Actions available on models in the UI of DeepIE3D. (a) are actions
always available, (b) is the action only available in Normal mode, (c)
are actions only available in Advanced mode. Descriptions taken directly
from the web application . 26

6.1. Airplanes to recreate in the user testing 28

7.1. Result of mutating the same 3D model nine times with a mutation rate
of 1.0 . 31

7.2. First result of crossovering two 3D models nine times 32
7.3. Second result of crossovering two 3D models nine times 33
7.4. Violin plots of similarity in 3D model distribution. The 3D models are

generated in four ways: Randomly, novelty search in latent space and
behavioral novelty search of 3D models with five or ten comparisons.
Each data point is the mean of a generated 3D model’s similarities to
the other generated 3D models . 34

7.5. 3D models from user testing: Normal mode 36
7.6. 3D models from user testing: Advanced mode 37
7.7. Histograms showing in which evolutionary iteration the subjectively

most satisfying model occurred in each of the six tasks in the user testing 38
7.8. Histograms showing subjective satisfaction levels of the best model found

in each of the six tasks in the user testing. Rated on a scale from 1 to 10 39
7.9. Histograms showing subjective satisfaction levels of the best of the last

models found in each of the six tasks in the user testing. Rated on a
scale from 1 to 10 . 39

7.10. Histograms depicting the overall evaluation given after using the DeepIE3D
web application throughout all six tasks. (a) shows the the volunteers’
perceptions of the user experience. (b) shows the volunteers’ percep-
tions of the ease of using the web application. Both are rated on a scale
from 1 to 10 . 40

7.11. Nine examples of 3D printed STL files exported from the DeepIE3D web
application. The colors are arbitrary and has no meaning. (a), (c),
(f) and (i) are printed on an Ultimaker 2 Extended; (b), (g) and
(h) are printed on an Ultimaker 2+; and (d) and (e) are printed on a
Makerbot Replicator . 41

8.1. First example of 3D models generated during epoch = 0 through epoch =
10, 000 when training the final PacWGAN-GP2 43

8.2. Second example of 3D models generated during epoch = 0 through
epoch = 10, 000 when training the final PacWGAN-GP2 44

List of Figures xi

8.3. Violinplot depicting the similarity between 512 randomly generated 3D
models of airplanes and their best fit in the training set. Each generated
3D model is compared to all 3D models in the training set and the
similarity is reported as a percentage of voxels in the same positions . . 46

8.4. Violinplots depicting comparisons of distributions between the training
set and generated 3D models. (a) shows the comparison of internal
mean similarity distribution between the training set and the generated
3D models. The mean similarity is calculated as a mean of the simi-
larities in their sets. All 3D models in the training set compare voxel
positions to all the other training set 3D models in order to produce a
similarity percentage. The same is done for 512 3D models produced
by the generator. (b) shows the comparison of voxel count distribution
between the training set and the generated 3D models 47

8.5. Lineage of chosen 3D models through ten evolutionary iterations when
recreating Airplane 2 (Figure 6.1b) in Normal mode (Task 2) 49

8.6. Line plot showing the performance of behavioral NS. The lowest amount
of new models to generate is 14, yielding an extra wait time of 10 seconds
to the web application user - or as high as 22 seconds when searching
in 10 random 3D models which could be argued crucial to ensure novelty 50

E.1. Gradients for the layers of the critic. 98
E.2. Gradients for the layers of the generator. 98
E.3. Gradient penalty . 99

List of Tables
4.1. Hyperparameters used for GAN training and their impact 18

5.1. Available server endpoints in the backend of DeepIE3D (API) 23

8.1. Ten paired-sample t-tests. Iteration ratio is the ratio between the it-
eration in which the best 3D model occurred and total iterations used
(10). Ai is the sample (a set of samples), µi is the sample mean and σi

is the standard deviation of the sample 51

List of Abbreviations
Adam Adaptive Moment Estimation.
API Application Programming Interface.
BCE Binary Cross-Entropy.
BN Batch Normalization.
CNN Convolutional Neural Network.
DCGAN Deep Convolutional Generative Adversarial Net-

works.
DeepIE Deep Interactive Evolution.
DeepIE3D Deep Interactive Evolutionary 3D Modelling.
EM Earth-Mover/ Wasserstein-1.
GAN Generative Adversarial Networks.
IEC Interactive Evolutionary Computation.
JS Jensen-Shannon.
KL Kullback-Leibler.
MLP Multilayer Perceptron.
NA-IEC Novelty-assisted Interactive Evolutionary Computa-

tion.
NS Novelty Search.
PacWGAN-GP2 Packed Wasserstein Generative Adversarial Networks

Gradient Penalty with doubled input.
ReLU Rectified Linear Unit.
RMSProp Root Mean Square Propagation.
WGAN Wasserstein Generative Adversarial Networks.
WGAN-GP Wasserstein Generative Adversarial Networks Gradi-

ent Penalty.

1. Introduction
3D modeling is an activity that requires a novice user to spend an excessive amount of
time in order to learn the most basic principles. The learning curve of the process is
steep which discourages many potential users. When a user becomes adequate at 3D
modelling, the process can still be cumbersome and prolonged.

Deep Interactive Evolutionary 3D Modelling (DeepIE3D) is a novel framework intro-
duced in this master’s thesis (thesis). It enables novice end users to perform otherwise
advanced and complex 3D modelling without prior knowledge of neither 3D modelling
nor the underlying software. Furthermore, it allows easy exploration of 3D model
domains (e.g. airplanes or chairs) making it a useful tool in concept development.

As stated in the name, DeepIE3D relies on the principles of interactive evolution.
Interactive evolution is a niche in AI-assisted creation where the user serves as the
fitness function in an evolutionary population. This concept implies that a user guides
evolution through indirect interaction with artifacts undergoing creation. In the case
of DeepIE3D, the artifacts created are 3D voxel models. During each evolutionary
iteration, the system responds to artifact interaction by evolving user picked artifacts
through mutation and/or crossover, creating a new evolutionary generation. Evolu-
tionary iterations are repeated until an artifact becomes close to a subjective goal set
by the end user or the end user becomes fatigued by the process. The latter termina-
tion of the process is known as user fatigue: A state in which the end user becomes
fatigued and exhausted by a tedious evolutionary process.

The word ”Deep” in DeepIE3D comes from the use of deep neural networks to en-
able a mapping between genotypes and phenotypes: From latent space (genotypes) to
artifact space (phenotypes). The deep neural networks strive to provide meaningful
artifact representations while permitting evolution in latent space. The importance of
reasonable artifact representations in a specific artifact domain cannot be underesti-
mated. It provides a space which is search-able by evolution, thus easing the process of
the end users which are able to guide this evolution. To further mitigate user fatigue
by a more varied exploration of the artifact space, DeepIE3D seeks to employ Novelty
Search (NS). In DeepIE3D, NS is utilized as a method to expand the variation of the
artifacts served to the end user.

The specific deep neural networks used in DeepIE3D are Generative Adversarial Net-
works (GAN). The GAN framework consists of two deep neural networks competing
in an adversarial process: A generator and a discriminator. The discriminator dis-
tinguishes real artifacts from counterfeited artifacts generated by the generator. The
objective of the generator is to deceive the discriminator. The generator of a pre-trained

2 Introduction

GAN provides the above mentioned phenotype/genotype mapping in the pre-trained
domain of artifacts.

DeepIE3D is an extended implementation of the Deep Interactive Evolution (DeepIE)
approach [2]. The original approach consists of interactive evolution combined with
deep neural networks used for artifact representation. In Bontrager et al. [2], the
implemented example focuses on 2D images, where DeepIE3D is concerned with 3D
voxel models. Throughout the thesis, DeepIE3D is compared to the implemented ex-
ample from DeepIE in regards to approach, user testing and user fatigue. However,
DeepIE3D is not merely an implementation adhering to the DeepIE approach: Along-
side the DeepIE approach, DeepIE3D introduces an alternative novel approach utilizing
evolutionary principles. Furthermore, the benefits of adding NS to DeepIE are explored
in this thesis.

DeepIE3D is publicly available as a web application1. The web application caters to
the end users in regards to user experience and functionality: After a few easily per-
formed evolutionary iterations, a subjectively satisfying 3D model can be downloaded
and e.g. directly printed from a 3D printer2. Along with the exposed web applica-
tion, the source code is publicly available on GitHub3 including pre-trained models and
instructions on how to use it.

The thesis is structured as follows:
Chapter 2 presents the background and related work followed by a description of the
training data in Chapter 3. In Chapter 4 the overall approach and implementation
of DeepIE3D is described, closely related to Chapter 5 describing the implementation
of the web application. The motivation and approach of the user testing is presented
in Chapter 6, while Chapter 7 displays the findings of this thesis including the ones
from user testing - Chapter 8 analyzes and discusses these findings. Finally, Chapter
9 reflects on future work, and the whole thesis is concluded in Chapter 10.

1DeepIE3D web application: https://adrianwesth.dk
2Short proof of concept video of DeepIE3D: https://www.youtube.com/watch?v=qYwVxKVQZmE
3DeepIE3D source code: https://github.com/ukuleleplayer/DeepIE3D

https://adrianwesth.dk/
https://www.youtube.com/watch?v=qYwVxKVQZmE
https://github.com/ukuleleplayer/DeepIE3D

2. Background & Related Work
This chapter presents a detailed overview of the background and related work serving
as a foundation of this thesis. It addresses Generative Adversarial Networks (GAN)
and evolution.

2.1. Generative Adversarial Networks
This section concerns itself with GANs, focusing on the architectures and frameworks
explored in this thesis.

GAN is a framework for estimating generative models. It originally consists of two
deep neural network models competing in an adversarial process: A generator and a
discriminator. The discriminator distinguishes real data samples from counterfeited
samples generated by the generator. The objective of the generator is to deceive the
discriminator [4].

2.1.1. Distances
When training GANs, a minimization of the difference between two probability distri-
butions is pursued. Three metrics of probability distribution difference are introduced:

• The Kullback-Leibler (KL) divergence

DKL(P ||Q) =
∑
x∈X

P (x), log P (x)

Q(x)
(2.1)

where DKL is the divergence between probability distributions P and Q, and X
is a compact metric set [5]. It is used to determine the loss of information when
Q is used to approximate P . KL divergence is asymmetric which entails it cannot
be used as a distance metric.

• The Jensen-Shannon (JS) divergence

DJS(P,Q) = DKL(P ||M) +DKL(Q||M), (2.2)

where M =
(P +Q)

2
[5]. In contrast to KL divergence, JS divergence is sym-

metric and can be used as a distance metric.

4 Background & Related Work

• The Earth-Mover (EM)/Wasserstein-1 distance

W (P,Q) = inf
γ∈Π(P,Q)

E(x,y)∼γ

[
||x− y||

]
, (2.3)

where Π(P,Q) denotes the set of all joint distributions γ(x, y) whose marginals
are respectively P and Q [5]. W (P,Q) of two distributions P and Q indicates
how much mass must be transported in order to transform Q to P ; it is described
as the cost of transforming one to the other [5].

Different GAN frameworks use different metrics.

2.1.2. Original Generative Adversarial Networks
As stated above, the original GAN framework consists of a generator and a discrimi-
nator. The generator tries to learn the distribution pq over the real data by creating
a mapping from latent vectors pz(z) of random noise to the real data space [4]. The
generator is denoted by G(z; θg), where G is a differentiable function represented by
a neural network with the parameters θg. Similarly, the discriminator is denoted by
D(x; θd) and often mirrors much of the generator as it takes inputs of the format
produced by the generator. The discriminator outputs a single scalar denoting the
probability of the input being real or fake [4]. The adversarial process can be staged
as a two player minimax game as seen in Equation 2.4:

min
G

max
D

V (D,G) = E
x∼pdata(x)

[
logD(x)

]
+ E

z∼pz(z)

[
log(1−D(G(z)))

]
(2.4)

Equation 2.4 is the objective of the two networks: The discriminator strives to
maximize the probability of predicting correct labels for both the real data points
and fake generated samples. The generator strives to minimize the probability of the
discriminator predicting the generated samples as fake.

The goal of the training is for G to converge on a probability distribution pg serving
as a good estimator of pdata [4]. This means that G should have global optimum
where pg = pdata. pg = pdata iff the JS divergence is zero and non-negative [4]. Thus,
the objective of the generator can be described as minimizing the JS divergence. See
Goodfellow et al. [4] for the theorem and proof.

2.1.3. Deep Convolutional Generative Adversarial Networks
In Goodfellow et al. [4] the GAN framework’s correctness is shown with two multilayer
perceptrons (MLP) as the discriminator and generator respectively. Radford et al.
[1] introduce Deep Convolutional Generative Adversarial Networks (DCGAN), an al-
teration of the original GAN framework where the two MLPs are substituted with

2.1. Generative Adversarial Networks 5

Figure 2.1: An example of a generator in a DCGAN. This generator generates 2D image
samples. It has no pooling or fully connected layers, but instead uses strid-
ing to upsample. Furthermore, it connects the input directly to the highest
convolutional features (image from Radford et al. [1])

convolutional neural networks (CNN). Past attempts to use two CNNs as the GAN
architecture have been unsuccessful, as popular structural approaches such as max
pooling layers and global average pooling were distorting the generated samples [1].

To remove the effects of pooling layers, DCGAN employs strided convolutions. This
alternative is still able to make the networks learn their own spatial up-/downsampling.
Global average pooling utilizes fully connected layers on top of convolutional features.
This has been substituted with connecting the highest convolutional features directly
to the input in the generator and to the output in the discriminator. The result is
much faster convergence [1]. The training is stabilized by using Batch Normalization
(BN) in all layers except the output layer of the generator and the input layer of the
discriminator [1]. BN normalizes batches of input to each neuron, reducing the range
the neuron values shift around [1, 6]. DCGAN utilizes the ReLU and Leaky ReLU
activation functions. ReLU is applied in the generator which makes it saturate earlier.
Leaky ReLU was found to work well in the discriminator [1].

An example of a generator in a DCGAN can be seen in Figure 2.1. The pictured
generator adheres to the alternative structure described above. The corresponding
discriminator is almost a mirrored version of this generator. The networks only differ
in the activation functions as described above.

2.1.4. 3D Generative Adversarial Networks
The 3D-GAN framework was initially introduced as part of a system called 3D-VAE-
GAN built to create 3D models from 2D images. 3D-GAN is a specific implementation
of DCGAN, where traditional convolutional layers are replaced by volumetric convolu-
tional layers capable of producing 3D models as output [3]. The discriminator and the
generator mirror each other network-wise, while differing from one another in regards

6 Background & Related Work

to activation functions: ReLU in the generator and Leaky ReLU in the discriminator.
No pooling layers or linear layers are added.

Wu et al. [3] employ an adaptive training strategy to keep the training of the genera-
tor and the discriminator in pace. This means that the discriminator only gets updated
if its accuracy is below 80%.

2.1.5. Wasserstein Generative Adversarial Networks

The Wasserstein GAN (WGAN) introduces an alternate way of training GANs. As
mentioned, original GAN training strives to learn a distribution estimating the data
probability distribution. During training, the discriminator learns the distribution by
discriminating real samples from fake samples, minimizing the JS divergence [4]. The
JS divergence can, however, saturate locally when the discriminator becomes closer to
optimality - this leads to vanishing gradient problems [5]: When the discriminator is
near-optimal, the generator will experience its loss function to be incapable of providing
context on how to train. Thus, a careful balance between training the generator and
discriminator is needed.

WGAN proposes a different approach: It substitutes the discriminator for a critic.
The critic does not discriminate between the inputs, instead it evaluates how far the
distribution of the fake data is from the the real data distribution. To do this it utilizes
the EM distance. Using the EM distance as the cost function leads to better generator
training since the gradient of the critic is more well behaved [7]. When the critic is
close to reaching optimality, the generator still receives a loss, describing how far it is
from the desired distribution [5]. In order to use the EM distance as a cost function,
the critic must lie within the space of 1-Lipschitz functions - this constraint is called
the 1-Lipschitz constraint. A k-Lipschitz constraint means that there is a constant k
that limits the slope between any two points to have a gradient of at most k [8].

The original implementation of WGAN enforces the 1-Lipschitz constraint by weight
clipping ensuring all weights are within a compact space [5]. This approach has a fault,
as the parameter determining the clipping can affect the training in two ways: When
too low, the network will take long to converge. When too large, the vanishing gradient
problem will reappear [7].

WGAN Gradient Penalty (WGAN-GP), an improved version of WGAN, has been
suggested in Gulrajani et al. [7]. Instead of weight-clipping, it introduces a gradient
penalty in order to enforce the 1-Lipschitz constraint. A function f is 1-Lipschitz if
its gradient norm is at most 1 in every point [7]. The gradient penalty constrains the
critic by reviewing the gradient of straight lines between points of pairs sampled from
the data distribution and the generated distribution. The optimal critic has straight
lines from points in the data distribution to points in the generated distribution with
gradient norm 1 [7]. The objective of WGAN-GP is a combination of the original critic

2.2. Evolution 7

from WGAN and the gradient penalty:

L = E
x̃∼Pg

[
D(x̃)

]
− E

x∼Pr

[
D(x)

]
︸ ︷︷ ︸

Original critic loss

+λ E
x̂∼Px̂

[
(||∇x̂D(x̂)||2 − 1)2

]
︸ ︷︷ ︸

Gradient penalty

(2.5)

The part of Equation 2.5 described as the Original critic loss is the EM distance
between two distributions Pg and Pr given by the Kantorovich-Rubinstein duality [9].
The part described as Gradient penalty is the penalty enforced when the gradient norms
are different from 1. ∇x̂D(x̂) is the output of D(x̂) differentiated with regards to x̂,
where x̂ is from the distribution sampled uniformly along straight lines between pairs
of points sampled from the data distribution Pr and the generator distribution Pg [7].

2.1.6. PacGAN
The PacGAN framework introduces an approach to mitigate mode collapse when train-
ing GANs. Mode collapse is a common phenomenon when training GANs. A mode
collapse is present, when a generative model fails to produce diverse artifacts: It only
produces artifacts from a few of the expected modes [10]. A mode is best explained
by example: A generative model trying to produce hand-written digits from e.g. the
MNIST 1 dataset can cover 10 modes as there are 10 different digits.

The main idea behind PacGAN is to pass m ”packed” or concatenated samples to
the discriminator. These samples are from the same class: Either both real or both
fake. Lin et al. [10] states that this approach allows the discriminator to do binary
hypothesis testing which penalizes mode collapse.

To create such a packed discriminator, the size of its input layer must be increased by
a factor of m. The packed discriminator is able to observe m samples, which intuitively
helps it detect mode collapse as lack of diversity becomes easier to detect [10].

2.2. Evolution
This section concerns itself with the two evolutionary concepts used in this thesis: Deep
Interactive Evolution (DeepIE) and Novelty Search (NS).

2.2.1. Deep Interactive Evolution
DeepIE is an approach combining deep learning with interactive evolutionary comput-
ing (IEC). This section only briefly touches the deep learning part, as the deep learning
utilized in this thesis is covered in Section 2.1. However, it should be noted that the
key insight in the main paper about DeepIE, Bontrager et al. [2], is concerned with
deep learning: ”... a GAN trained on a specific target domain can act as a compact and

1The MNIST Database: http://yann.lecun.com/exdb/mnist/

http://yann.lecun.com/exdb/mnist/

8 Background & Related Work

robust genotype-to-phenotype mapping ...”. Since the GAN mapping is well behaved,
the genotypes are suited for evolutionary control.

IEC is an AI-assisted creative process. Instead of directly manipulating artifacts (e.g.
pictures or 3D models) during creation, the users communicate their desired changes
indirectly via feedback and suggestions to the software. When used in conjunction
with GANs, the evolution is performed on the latent vectors, the genotypes, and the
user feedback becomes the fitness function in regards to the generated artifacts, the
phenotypes [2].

As stated by Bontrager et al. [2], this interactive AI-assisted creation has interesting
applications:

• It empowers the novice user to create artifacts of higher quality than otherwise
feasible - e.g. 3D modelling as this is not a trivial task and normally requires
technical skills to perform

• It allows the user to create and explore artifacts with traits they would not
normally strive towards

Traditionally, IEC has been used in open-ended domains with undefined objectives
[2]. Finding the desired artifacts may likely be a cumbersome process taking a large
number of iterations. This leads to the issue known as user fatigue, since users tend to
tire after evaluating relatively few generations.

DeepIE tries to mitigate user fatigue by finding better artifact representations and
restricting the class of artifacts to a certain domain. Both mitigations are achieved by
the previously mentioned GAN.

DeepIE relies on two evolutionary principles: Mutation and crossover. Mutation is
the process of randomly altering an artifact, crossover is the process of joining two
artifacts by mating, thus creating an offspring with features from both artifacts.

The DeepIE approach is as follows: The generator from a pre-trained GAN takes
randomly generated latent vectors as input. A number of artifacts (images in Bontrager
et al. [2]) are produced which are shown to the user. The user selects the desired
artifacts and the latent vectors of these undergo evolution: Some selected latent vectors
are crossovered and new random latent vectors are generated. The selected latent
vectors and the crossovered latent vectors are mutated and lastly passed to the GAN.
Then the process loops. Figure 2.2 shows an illustrated overview of this process.

The evaluation method used to measure user fatigue and overall performance in
DeepIE is user testing. Users are given tasks to reconstruct images of shoes and faces
and the results produced are acceptable. The overall feedback from the users is a mix
of amusement and frustration [2].

IEC is not the only way to perform interactive 3D modelling: Liu et al. [11] employ
a different approach which utilizes the 3DGAN for artifact representation. Instead
of evolving the 3D models, the end users make rough edits to them. After roughly
editing a 3D model, the underlying system performs a SNAP command transforming

2.2. Evolution 9

Figure 2.2: Overview of the DeepIE approach in four steps constituting a cycle: First, a
pre-trained generator is passed latent vectors to produce artifacts. Second, a
user selects a range of artifacts based on subjective satisfaction. Third, the
latent vectors associated with the selected artifacts are passed on. Fourth, the
latent variables are evolved with a mutation rate determined by the user (image
from Bontrager et al. [2])

the rough 3D model into a more realistic one [11]. The results are promising, but the
overall user experience, including user fatigue, is not assessed.

2.2.2. Novelty Search
NS is an algorithm used in evolutionary computing which favors novel behaviors in
contrast to objective performance. Instead of rewarding candidates achieving high
fitness, candidates exhibiting novelty are rewarded.

According to G. Woolley and Stanley [12], NS combined with IEC creates a comple-
mentary effect that offsets each other’s limitations. NS thrives with proper guidance
and IEC requires ways to mitigate user fatigue. The guidance is provided by the user
interaction from IEC and the user fatigue mitigation is provided by an easier explorable
search space by NS. The approach combining NS and IEC is called novelty-assisted
interactive evolutionary computation (NA-IEC). In this thesis, the initial version of
NA-IEC is slightly modified since fitness evaluation is left entirely to the users, and
since novelty is measured in the genotypes (latent space), not the phenotypes (behav-
ioral space). Please see Section 4.2 for implementation details and Section 8.2 for a
discussion of the results concerning NS.

3. Data
The training data used in DeepIE3D is 3D models in binvox format. A file of this
format has a header describing dimensions, translations and scale of the subsequent
voxel data.
A voxel represents a single data point in a regularly spaced 3D grid1. The data points
of the 3D models used for training contain only one value: 1 or 0.

All 3D models have been downloaded from ShapeNet2; more specifically the ShapeNetCore
v2 data set. During training, three model domains were used: Chairs, airplanes and
cars - see Figure 3.1 for examples of the different model domains. To view raw binvox
files, the viewvox3 program has been utilized. To read and write binvox files, the
Python module binvox_rw4 has been utilized.

The 3D models from ShapeNet were not initially suited for training, leading to three
preprocessing steps done in the below written order:

• Downscaling
The original 3D models from ShapeNet are of dimension 128×128×128. Working
with data of that size is computationally heavy and infeasible to render in the
final application. Scaling the models down to 64×64×64 reduces the data size
eight times while still preserving similarity. An example of similarity preserv-

(a) Car 64x64x64
(b) Chair 64x64x64

(c) Airplane 64x64x64

Figure 3.1: Three 3D models from different training sets. Each model is an example from
a domain of training data

1Definition of Voxel: https://en.wikipedia.org/wiki/Voxel
2ShapeNet: https://www.shapenet.org/
3Program for viewing binvox files: http://www.patrickmin.com/viewvox/
4Python module for reading and writing binvox files: https://github.com/dimatura/binvox-rw-py

https://en.wikipedia.org/wiki/Voxel
https://www.shapenet.org/
http://www.patrickmin.com/viewvox/
https://github.com/dimatura/binvox-rw-py

11

(a) Airplane 128×128×128 (b) Airplane 64×64×64

Figure 3.2: A comparison of an original 3D model (a) and its downscaled 3D model (b)

ing downscaling can be seen in Figure 3.2. All 3D models in DeepIE3D are of
dimension 64x64x64.

• Centering
The original 3D models from ShapeNet are not all situated in the same position.
This unnecessarily increases difficulty of the training objective. Thus, all models
have been centered in both the x- and the y-axis.

• Removing outliers
After downscaling and centering the 3D models, it was necessary to manually
select usable models. Downscaling may result in incomplete models, e.g. a chair
missing a leg. Furthermore, the original 3D models from ShapeNet have outliers
in the sense that some models do not fit its model domain. In the airplane
domain, some of the models have too much inspiration from ”Star Wars”, while
other models have excessively varying sizes.

During training, data sets as small as 32 3D models are used for rapid testing, while
the final model is trained on 512 hand-picked 3D models from the airplane domain.

When comparing similarity between two 3D models, the voxel similarity is used: Out
of the total amount of voxels with respect to one of the models, how many voxels do
they share. In other words: shared_voxels

total_voxelsm
where m is the model in focus.

4. Approach & Implementation
This chapter describes the approach and implementation details of the system imple-
mented in this thesis: DeepIE3D.

The main idea behind DeepIE3D is to enable interactive evolution in the 3D mod-
elling domain. This is achieved by: First, train a GAN on a specific 3D model domain
(e.g. airplanes or chairs). Second, expose the generator from the GAN through an
API, enabling 3D model construction directly from latent vectors. Third, expose evo-
lutionary concepts through an API, enabling evolution of latent vectors. Fourth and
last, encapsulate the above in a user friendly application, enabling intuitive manipula-
tion of 3D models through a user interface. The source code of DeepIE3D, including
two pretrained models and several preprocessed data sets, is publicly available at:
https://github.com/ukuleleplayer/DeepIE3D.

The following sections will in detail elaborate on how this is achieved and Chapter
5 is dedicated to the web application.

4.1. Generative Adversarial Networks
This section describes the overall considerations in regards to the GAN implementations
in this thesis. This mainly concerns the original Deep Convolutional GAN (DCGAN)
and the Wasserstein GAN Gradient Penalty (WGAN-GP).

4.1.1. Architecture
The initial implementation was heavily influenced by the 3D-GAN implementation by
the user rimchang on GitHub [13]. It is an adaption of the 3D-GAN framework de-
scribed in Wu et al. [3] implemented in the Python library PyTorch. The 3D-GAN
framework consists of a generator and a discriminator like the original GAN. The gen-
erator maps a latent vector to a 3D tensor representing a 3D model. The discriminator
maps a cube corresponding to the output of the generator to a likelihood of it being
real. The 3D-GAN framework uses neural network models with architectures of vol-
umetric fully convolutional layers [3]. The generator consists of layers of kernel sizes
4×4×4 and strides 2, utilizes batch normalization and lastly uses ReLU as activation
function in each layer. The last layer ends with an elementwise sigmoid activation.
The structure of the generator can be seen in Figure 4.1. The discriminator mirrors
the generator, except ReLU is replaced by Leaky ReLU. The generator uses transposed

https://github.com/ukuleleplayer/DeepIE3D

4.1. Generative Adversarial Networks 13

Figure 4.1: 3D-GAN generator architecture. A latent vector z is mapped to a 3D matrix
representing a 3D object. The boxes between are volumetric fully convolutional
layers (image from Wu et al. [3])

convolutional layers for upsampling, and the discriminator uses normal convolutional
layers for downsampling.

The architecture of the models in this thesis is very close to the ones described in
Wu et al. [3]. A distinction is made thorugh the choice of using WGAN-GP as op-
posed to a traditional DCGAN. Batch Normalization (BN) can no longer be applied
in the discriminator/critic (WGAN-GP’s counterpart to a discriminator), as the gra-
dient penalty would otherwise be faulty: BN maps a batch of inputs to a batch of
outputs through internal normalization, but gradient penalty depends on gradients
from independent single inputs [7]. A layer-normalization scheme was attempted as it
is suggested as a substitute for BN in Gulrajani et al. [7]. It was rejected as it results
in the training never converging.

In order to avoid overfitting and mode collapse, a dropout strategy was enforced
between convolutional layers. PyTorch has a Dropout3D layer which can be used
without modifications in 3D convolutions; it randomly drops out entire channels [14].
This was, however, discarded as both models trained with or without dropout layer
produced very similar results with a variety of modes.

The WGAN-GP architecture was extended to a PacWGAN-GP2 architecture. Pac-
GAN changes the format of the input given to the discriminator/critic to fit a collection
of generated and real data objects. PacWGAN-GP2 doubles the input (m = 2) which
makes it take two data points (either both fake or both real) as input.

4.1.2. Training Ratios
When training a GAN, a ratio between training the discriminator and the generator has
to be found. A ratio resulting in training the discriminator insufficiently will make the
generator constantly able to fool the discriminator, even though it does not generate
samples close to a desired artifact. Vice versa, a ratio resulting in insufficient generator
training will result in a discriminator too good at discerning what samples are real.
Thus, the generator will struggle to learn the data distribution.

14 Approach & Implementation

Two factors can affect the training ratio: The loss function and the nature of the
training set. The loss function, along with the learning rate, decides how much the
network is back-propagated. If the loss function for either network is better at making
its network converge, it will skew the training. Likewise, the nature of the training
set can impact the GAN training: In the case of this thesis, distinguishing between
128×128×128, 64×64×64 and 32×32×32 3D models has an impact. A ratio favoring
increasingly more discriminator training is needed as the voxel count grows.

The two following sections describe the final training ratios used in this thesis.

Original DCGAN

In the PyTorch implementation of 3DGAN, the ratio is determined by the discrimi-
nator’s prediction accuracy. As default, the discriminator is only allowed to train if
its accuracy is less than 80% [13]. Thus, the generator is potentially allowed to train
multiple times per discriminator training. This implicates that the discriminator may
perform too well when the ratio is one to one.

Soumith Chintala (creator of PyTorch and co-author on WGAN and DCGAN papers
[1, 5]) has created a GitHub repository providing hacks for training GANs. In section 14
in the repository’s README.md, he states that training the discriminator more often than
the generator helps in some cases. The PyTorch implementation of 3DGAN references
to Chintala’s GitHub repository [15]. The above training ratios are conflicting.

In this thesis, the initial implementation with the original DCGAN architecture from
the 3DGAN framework was fine-tuned on small data sets of 32×32×32 3D models.
When a higher resolution was needed, the training data was switched to 64×64×64 3D
models.

The initial training ratio was the same as the default from the 3DGAN PyTorch
implementation. This ratio is heavily skewed as the generator will always fool the
discriminator and will not generate useful models within 1000 epochs.

A one to one training ratio was adopted but showed the same skewing as the prior
ratio. This is consistent with the findings in the original implementation.

This, along with the hacks provided in Chintala [15], decided that a ratio favoring
discriminator training is needed. The first approach was similar to training a WGAN
(see below): Train the discriminator n times every epoch. This yields better results, but
the discriminator can train multiple times even though it is already sufficiently good
at discriminating. Furthermore, sometimes even n training cycles for the discriminator
is insufficient for catching up with the generator.

This led to a ratio based on multiple discriminator trainings with a conditional on
the discriminator’s accuracy: Every epoch the discriminator is trained n times as long
as its accuracy is below a threshold (default: 80%). This allows the discriminator to
catch up with the generator but not train unnecessarily.

With this ratio, the discriminator can become overly effective, leading to a generator
unable to learn at the same pace. Thus, an upper bound on the discriminator’s accuracy

4.1. Generative Adversarial Networks 15

was instantiated: The discriminator is only allowed to train when its accuracy is below
100%.

The final training ratio of the DCGAN in this thesis is as such: Train the discrimi-
nator until its accuracy is above a specified threshold. If the accuracy is above another
threshold (default: 100%), do not train the discriminator. Train the generator once.

WGAN-GP

The models with WGAN-GP and PacWGAN-GP2 architectures are always trained on
64×64×64 3D models.

An essential concept of WGAN-GP training is for the critic to be trained to opti-
mality [5]. However, as the critic is not a discriminator, it does not have an accuracy
on which to base the training ratio. This thesis adapts the training ratio from the
WGAN-GP pseudocode to achieve critic optimality [7]. This approach simply trains
the critic five times each epoch while training the generator once.

4.1.3. Loss Functions
The loss function in a neural network with backpropagation determines how much
weights in a network update. When working with GANs, it is hard to decide which
loss function results in the best training.

The below discussed loss functions are chosen based on published GAN papers.

Original DCGAN

The PyTorch implemenation of 3DGAN utilizes Binary Cross-Entropy (BCE) as its loss
function [13]. BCE, also called Sigmoid Cross-Entropy, is a Sigmoid activation followed
by the distance from a classification. The discriminator concerns itself with two data
classes: real = 1 and fake = 0. BCE calculates loss as a distance of the predicted class
to the actual class. This is done independently for both classes, aggregating all losses
of individual samples. The original objective function of the discriminator, described
in equation 2.4, is BCE [16]. Thus, the objective of the discriminator is to assign low
probabilities to fake samples and high probabilities to real samples. Furthermore, BCE
can be used as the loss function of the generator: The generator’s objective is to strive
towards having assigned high probability to its generated samples by minimizing BCE
loss between discriminator predictions and the real class.

As the implementation of the system in this thesis is based on the 3DGAN PyTorch
implementation [13], the initial loss function was BCE. As stated in Subsection 4.1.2,
training with the initial settings is ineffective as it does not converge within 1000 epochs.
This is however not due to the loss function, but the training ratio: Deciding on a loss
function is heavily reliant on finding the right training ratio. When a sufficiently good
training ratio was found, BCE was deemed adequate.

16 Approach & Implementation

One addition to BCE was tried: A heuristic which steers the generation of 3D models
towards the number of voxels in the training set. This is done by adding a penalty
when the number of voxels is outside the bounds of the highest and lowest amount of
voxels found in the training set. The heuristic was not found effective. It slows the
convergence of the training and does not result in better generated models.

WGAN-GP

WGAN, which uses the EM distance as its loss function, has been shown to yield better
results than the original GAN [5]. It addresses the vanishing gradient problem, which
the original GAN often experiences, by having a critic instead of a discriminator.

WGANs have been shown to create stability in training, ensuring a higher chance of
convergence [5]. Gulrajani et al. [7] suggest an improved training process of WGAN:
WGAN-GP. Instead of weight-clipping, it uses a penalty on the gradient of the critic
with respect to its input in order to enforce the 1-Lipschitz constraint. This is an
addition to the original critic loss function.

In this thesis, WGAN-GP is the chosen WGAN implementation. The loss function
implemented is the objective seen in Equation 2.5. The original critic loss is imple-
mented as the mean critic predictions of the fake samples subtracted by the mean of
critic predictions of the real samples. The gradient penalty is implemented in the fol-
lowing way: Initially, real and fake samples are interpolated. The interpolated samples
are fed to the critic and the resulting values’ gradients, with regards to the interpolated
samples, are found. The penalty is the vector norms of these gradients subtracted by
1, squared and finally averaged. The loss function of the generator is the negated mean
of critic predictions of its generated samples.

4.1.4. Modes and Overfitting
In this thesis, mode collapse was often encountered. Thus, actions were taken in order
to prevent it.

When the original DCGAN implementation became capable of producing models of a
satisfactory quality, it became evident that it is victim to mode collapse: When trained
extensively, it almost always produces the same model with very few alterations.

The choice to implement WGAN-GP relies on the premise that it prevents mode col-
lapse [7]. Mode collapse in the original GAN is due to a generator collapsing towards a
delta function at the data point(s), where the discriminator predicts the highest prob-
ability of being real [5, 17]. WGAN-GPs train the discriminator/critic to optimality
to avoid this.

The WGAN-GP framework does remove mode collapse, as its generator produces
a variety of different modes. The number of modes produced by WGAN-GP in this
thesis is, however, still not the full set of modes.

The PacGAN framework is designed to mitigate mode collapse and is compatible

4.1. Generative Adversarial Networks 17

with various GAN architectures, including WGAN-GP. PacWGAN has been shown to
discover more modes than WGAN-GP [10]. Thus, PacWGAN-GP2 has been imple-
mented to increase the number of modes produced by the generator. Please note that
when Lin et al. [10] mention a PacWGAN, the WGAN is actually a WGAN-GP, which
explains why it is called a PacWGAN-GP2 in this thesis.

As stated earlier, a dropout-strategy was enforced in order to avoid overfitting. This,
however, yields no significant results. Analysis of whether the final generative model
is overfitting can be found in Subsection 8.1.2.

4.1.5. Optimizer
The original WGAN discourages the use of the popular Adaptive Moment Estimation
(Adam) optimizer as training becomes unstable [5]. Instead, the Root Mean Squared
Propagation (RMSprop) optimizer is encouraged. In Gulrajani et al. [7] an experi-
ment is conducted with the Adam and RMSProp optimizer respectively. WGAN-GP
achieves better performance when using the Adam optimizer compared to the RM-
SProp optimizer [7].

The final models with WGAN-GP architecture produced in this thesis use the Adam
optimizer due to this.

The Adam optimizer, unlike normal stochastic gradient descent, maintains individ-
ual learning rates of all the network parameters. It determines the learning rates by
utilizing two moments: The average mean of the gradients and the average uncentered
variance of the gradients [18].

The Adam optimizer needs two coefficients: β1 and β2. The coefficients are used
for computing parameter learning rates for the two moments of the gradient. β1 is the
decay rate of the first moment, and β2 is the decay rate of the second moment.

Kingma and Ba [18] state that β1 = 0.9, β2 = 0.999 are good default values for
machine learning tasks. This is also evident as machine learning libraries such as
PyTorch use these values as default [19]. When training the 3DGAN, Wu et al. [3] set
β1 = 0.5 as Radford et al. [1] find it stabilizes training. When training WGAN-GP,
Gulrajani et al. [7] set β1 = 0.0 and β2 = 0.9.

The values of the betas in this thesis are the same as the suggested values found in
the papers where the architectures are introduced.

4.1.6. Hyperparameters
The hyperparameters associated with the training of the models impact the training
process. They need to be tuned in order to achieve optimal training behavior. This is
not trivial and needs to be explored through trial and error.

In this thesis, the hyperparameters and their impact can be seen in Table 4.1.

18 Approach & Implementation

Description Space Impact

z distribution

The space of the values contained in
the latent vector. Can have a uniform
distribution or a normal (gaussian)
distribution

uni: Uniform distribution [0.0;1.0]
norm033: Normal distribution
centered in 0.0 with stddev = 0.33
norm1: Normal distribution
centered in 0.0 with stddev = 1.0
Default: norm1

Using a uniform distribution ensures all
variables to be within a specified range.
Using a normal distribution prevents
diverging from a model’s prior distribution
and produces sharper artifacts [20]

Labels

The labels for the real and the
generated fake data. They specify
the value which the discriminator
should strive to achieve. Only used
when GAN type is DCGAN

noisy: Fake labels sampled
from uniform distribution [0.0;0.15],
real labels sampled from
uniform distribution [0.85;1.0]
hard: Fake labels = 0.0,
real labels = 1.0
d_hard: Fake labels = 0.0,
real labels = 0.9
Default: noisy

The purpose of noisy labels is
to avoid overconfidence which
can cause overfitting. To avoid overfitting
with hard labels, d_hard can
be employed. As the real labels are 0.9,
overconfidence will be penalized

D Iterations
The number of times the
discriminator is trained for
each training of the generator

[0;∞]
Default: 5

In DCGAN, this can make the discriminator
and generator progress similarly (often
combined with D Threshold).
In WGAN-GP, the number of iterations must
be high enough to train the discriminator
to optimality

D Threshold

The lower limit of accuracy of the
discriminator. The discriminator
is trained until the accuracy is
above the threshold.
Only used when GAN type is DCGAN

[0.0;1.0]
Default: 0.8

This can make the discriminator
and generator progress similarly
(often combined with D Iterations)

Adam optimizer
betas

Coefficients used for computing
parameter learning rates by two
moments of the gradients:
The mean and the uncentered
variance. The coefficients are
the decay rates of the moments [19]

β1: [0.0;1.0]
β2: [0.0;1.0]
Default: [β1 = 0.0; beta2 = 0.9]

When GAN type is DCGAN, β1 = 0.5
and β2 = 0.999 ensures stable
training [1]. Gulrajani et al. [7]
suggest using β1 = 0.0
and β1 = 0.9 when GAN type is WGAN-GP

GAN type The architecture of the
generative adversarial nets

DCGAN
WGAN-GP
PacDCGAN2
PacWGAN-GP2
Default: PacWGAN-GP2

DCGAN trains the fastest. In some cases, it
experiences mode collapse. WGAN-GP
adresses the vanishing gradient problem
and should prevent mode collapse.
PacWGAN-GP2 takes two 3D
models as input in the discriminator.
This results in more modes

Training data size The size of the training data set [0;∞]
Default: 512

When the data size increases, the
chance of a higher variety increases.
This results in more modes

Batch size
The size of the batches of training
data, which is used for one round
of training both networks

[0;|Training data|]
Default: 64

Often limited by (GPU) memory.
A small batch size leads to slower
epochs, as each batch has back
propagation steps.
However, the frequent training
with a small batch size can cause
the networks to converge at an
earlier epoch

Learning rates The learning rates for
the networks

[0.0;1.0]
Default: [Dlr = 0.0001, Glr = 0.0001]

How much the gradient weighs in the
backpropagation process

WGAN gradient
penalty lambda

The lambda is the degree of the
gradient penalty. The gradient
penalty is multiplied with the
lambda

[0;∞]
Default: 10

As the gradient penalty is part of the loss
function of the discriminator, it affects how
much the network is backpropagated

Table 4.1: Hyperparameters used for GAN training and their impact

4.2. Evolution 19

4.2. Evolution
The DeepIE algorithm from Bontrager et al. [2] is implemented as true to the original
as possible: First, latent vectors of selected 3D models are passed to the algorithm.
Second, a share of the latent vectors are crossovered, and additional random samples
are added. Third, the crossovered and selected latent vectors are mutated and returned
along with the random latent vectors. Fourth and last, new 3D models are generated
based on the previous result.

The excerpt implemented of the DeepIE algorithm can be seen in Figure 4.2. The
two changes made are small but significant: First, the latent vectors used in DeepIE3D
are associated with user selected 3D models, not user selected images. Second, the
amount of latent variables in the latent vectors are 200, not 20. The amount of latent
variables were chosen in accordance to the 3D-GAN implementation [3].

To further experiment with interactive evolution, a novel custom evolutionary ap-
proach is implemented alongside the original algorithm: Instead of choosing the 3D
models to ones liking and running them through an algorithm, one decides entirely
how the next generation should be evolved. In every evolutionary iteration, nine 3D
models are generated. The custom approach offers four different actions to customize
the next evolutionary generation: Create an entirely new 3D model, keep a 3D model
as it is, mutate a 3D model, or crossover a 3D model with another 3D model. The
underlying mutation and crossover implementations are identical to Bontrager et al.
[2]. This custom approach has several implications:

• It is possible to use a single 3D model as baseline for the whole next evolutionary
generation (e.g. mutating it nine times)

• It is possible to fully avoid evolving a 3D model, but still keep it in the next
evolutionary generation as is

• It is possible to attempt to pass on the traits of a single model to all others by
crossovering it with all other 3D models

Figure 4.2: Excerpt of the original DeepIE algorithm (image from Bontrager et al. [2])

20 Approach & Implementation

• It is possible to dictate the entire composition of the next evolutionary generation

In addition to the two evolutionary approaches, Novelty Search (NS) is implemented.
The novelty metric used in this thesis is the novelty of the latent vectors. The degree
of novelty corresponds to the distance in euclidian space. Two reasons led to this
novelty metric, the first being most important: First, it is not viable performance-
wise to compare 3D models (see Subsection 8.2.2 for a thorough analysis). Second, it
was deemed capable of characterizing the space of unique behaviors in a way that is
meaningful to 3D model generation - however, as described later in Subsection 8.2.2,
this turns out to be wrong.

This latent space version of NS can easily be added to both the original DeepIE
algorithm and the novel custom approach. When NS is performed, all new 3D models
in the next evolutionary generation are generated using as different latent vectors as
possible. If the next evolutionary generation consists of nine new 3D models, an initial
random latent vector serves as a starting point. Please refer to the pseudocode in
Algorithm 1 for implementation details - the actual implementation is done in Python.

4.2. Evolution 21

Algorithm 1: Novelty Search in Latent Space
Defaults: m← 9, n← 200,min← −4.9,max← 4.9

1 Z ← m by n matrix where Zi,j ∼ N (µ, σ2)
2 indices← GetChosenModels() // UI is responsible for this
3 NoveltySearch(Zindices)
4 Function NoveltySearch(Z):
5 if Z length == 0 then
6 noise← vector of length n where noisei ∼ N (µ, σ2)
7 Z ← Z + noise

8 end
9 for i← 0 to m−Z length do

10 Z ← Z+ CreateNovel(Z)
11 end
12 return Z

13 Function CreateNovel(Z):
14 novel ← EMPTY LIST
15 for i← 0 to n do
16 numbers← EMPTY LIST
17 foreach vector v of the matrix Z do
18 numbers.add(vi)
19 end
20 novel.add(NovelNumber(numbers))
21 end
22 return novel

23 Function NovelNumber(numbers):
24 numbers.add(min)
25 numbers.add(max)
26 numbers.sort()
27 maxDist← −1.0
28 number ← 0.0
29 for i← 1 to numbers length do
30 tempDist← |numbersi − numbersi−1|
31 if tempDist > maxDist then
32 maxDist← tempDist
33 number ← numbersi−1

34 end
35 end

36 return number +
maxDist

2.0

5. Web Application
This chapter concerns itself with the web application exposed to the end users of
DeepIE3D. The web application is publicly available at this site: https://adrianwesth.dk.

5.1. Technologies and Frameworks
The web application consists of a front-end (the client) and a back-end (the server).
The back-end is responsible for generating 3D models in addition to performing the
evolution described in Subsection 4.2. As the original training of the GAN is done in
Python using PyTorch, the whole back-end is written in Python.
The front-end is responsible for rendering the 3D models, storing the latent vectors and
providing a seamless, easy-to-use user interface (UI). The whole front-end is written in
Dart; a typed programming language by Google which transpiles to JavaScript.

The back-end relies heavily on a framework called Flask1 which takes care of routing,
sending data and generally serving the backend - it supports multithreading and is able
to be hosted in a production environment.

For rendering using WebGL, the front-end utilizes the JavaScript library three.js2.
This adds a much-needed layer of abstraction, making it possible to render 3D models
without writing a shader from scratch. Even with the abstraction, having to process
as vast data volumes as the 64×64×64 3D voxel models still poses some challenges: It
is too computationally heavy to render each voxel as a box. Instead, it is necessary
to create vertices and faces, constructing the entire 3D model using only 2D triangles;
one of the primitives in WebGL.

As mentioned, the web application is built around the classical client/server archi-
tecture. The list of available server endpoints and their functionality can be seen in
Table 5.1. The server is hosted on Google App Engine3 which automatically scales
the underlying hardware based on demand. It is easy to deploy and the scaling ensures
low cost while being ready to perform in the event of unexpected interest in the web
application.
The client is hosted on one of the authors’ own domain. Only requests from this specific
domain receive valid responses from the server.

1The Flask framework: http://flask.pocoo.org/
2The JavaScript library three.js: https://threejs.org/
3Google App Engine: https://cloud.google.com/appengine/

https://adrianwesth.dk
http://flask.pocoo.org/
https://threejs.org/
https://cloud.google.com/appengine/

5.2. Evolution 23

Endpoint HTTP Method Request Data Type Response Data Type Description

/initialize_single/ POST model_type ← string
z ← list of float
coords ← list of list of int
camera ← list of int

Initializes a single 3D model
along with its latent vector and
camera placement information

/generate_single/ POST model_type ← string
z ← list of float

coords ← list of list of int
camera ← list of int

Generates a single 3D model
based on a latent vector.
Includes camera placement
information

/evolve/ POST

specifications ← string
mutation ← float
novelty ← bool∑8

n=0 zn ← list of float

∑8
n=0 zn ← list of float

Evolves all given latent vectors
based on the specifications,
mutation rate and novelty

/download_binvox/ POST model_type ← string
z ← list of float octet stream

Generates a 3D model from
the latent vector and
downloads it

Table 5.1: Available server endpoints in the backend of DeepIE3D (API)

5.2. Evolution
Two versions of evolution are implemented in the web application: The original al-
gorithm from Bontrager et al. [2] and the novel custom evolutionary approach. The
background behind the original algorithm is described in Section 2.2 while the imple-
mentation details of both algorithms are described in Section 4.2. The end user has
easy access to both versions in the UI. All technical details are hidden from the user
while providing powerful tools to perform evolution at the same time.

The front-end is only responsible for storing the current evolutionary generation as
latent vectors, the back-end performs the evolutionary computation. Figure 5.1 shows
an in-depth illustration of the evolutionary flows.

In the web application, the original DeepIE algorithm is called Normal mode and
the custom evolutionary approach introduced in Section 4.2 is called Advanced mode.
In both Normal mode and Advanced mode the user has the option to enable Novelty
Search (NS). This forces the distribution of latent vectors to widen, thus opening up
for more different models. The NS feature is disabled in the web application due to
findings in this thesis; see Subsection 7.1.3 and Subsection 8.2.2 for further details.

24 Web Application

Figure 5.1: Overview of the DeepIE3D approach in four steps constituting a cycle: First,
a pre-trained generator is passed latent vectors to produce artifacts. Second, a
user either a) selects a range of artifacts based on subjective satisfaction, or b)
customizes the next evolutionary generation. Third, the latent vectors associ-
ated with the selected artifacts are passed on. Fourth, the latent variables are
evolved based on the evolutionary approach used with a mutation rate deter-
mined by the user. In the second step, choosing a) corresponds to Figure 2.2,
while choosing b) corresponds to the novel custom approach

5.3. User Interface
The UI of the web application is tailored to the end users and requires very little
knowledge about evolution, 3D modelling or artificial intelligence in general. As the
web application is publicly available, the UI will only be described briefly. The overall
UI can be seen in Figure 5.2 and Figure 5.3.

The main element on the web application is a grid of canvases displaying the gener-
ated 3D models. To allow easy navigation, each canvas itself exposes several actions.
The general actions can be seen in Figure 5.4a, the actions available only in Normal
mode can be seen in Figure 5.4b and actions available only in Advanced mode can be
seen in Figure 5.4c. When in Advanced mode, a list shows how the next evolutionary
generation will be evolved. Furthermore, an icon layer on each canvas shows how that
3D model contributes to the next evolutionary iteration.

The web application offers a thorough user guide, which introduces the end user to
all necessary aspects of using DeepIE3D and suggests further reading. The user guide
and all other text in the web application are kept easily readable and user-oriented.

5.3. User Interface 25

Figure 5.2: The UI of DeepIE3D in Normal mode. The red circle indicates actions available

Figure 5.3: The UI of DeepIE3D in Advanced mode. The red circles indicate differences
from Normal mode and actions available

26 Web Application

(a)

(b)

(c)

Figure 5.4: Actions available on models in the UI of DeepIE3D. (a) are actions always
available, (b) is the action only available in Normal mode, (c) are actions
only available in Advanced mode. Descriptions taken directly from the web
application

6. User Testing
This chapter describes the motivation and approach of the user testing of DeepIE3D.
The results can be found in Section 7.2 and are further discussed in Section 8.3.

6.1. Motivation
The main motivation to perform user testing of DeepIE3D is to obtain user feedback on
how it performs in various tasks. As the end product primarily is aimed towards novices
in the 3D modelling domain user testing is a critical part of evaluating its success.
Success is defined as an outcome, where DeepIE3D delivers subjectively satisfactory
results after process of 3D modelling without user fatigue.

Concretely, the goal of the user testing is to evaluate the following:

• How Advanced mode performs compared to Normal mode

• How DeepIE3D performs in recreation tasks

• How DeepIE3D performs in creative tasks

• How DeepIE3D operates in regards to user fatigue

6.2. Approach
The user testing approach is inspired by Bontrager et al. [2], but diverges in many
ways.

The seventeen users participating (volunteers) were given a questionnaire. The exact
questionnaire can be found in Appendix C, and the answers obtained from it can be
found in Appendix D.

Guided by the questionnaire, the volunteers were given an introduction to DeepIE3D
and were told to read the user guide in the web application. The goal of the user guide
is to briefly introduce the purpose of DeepIE3D and give a thorough introduction on
how to use it.

Concretely, the volunteers were assigned six tasks (four recreation, two creative):

Task 1 Using Normal mode, recreate the airplane shown in Figure 6.1a

Task 2 Using Normal mode, recreate the airplane shown in Figure 6.1b

28 User Testing

(a) Airplane 1 (b) Airplane 2

Figure 6.1: Airplanes to recreate in the user testing

Task 3 Using Advanced mode, recreate the airplane shown in Figure 6.1a

Task 4 Using Advanced mode, recreate the airplane shown in Figure 6.1b

Task 5 Using Normal mode, create an imaginative airplane to ones liking

Task 6 Using Advanced mode, create an imaginative airplane to ones liking

All above tasks were done using ten evolutionary iterations. In all of the tasks, the
volunteers were asked to do the following:

1. In the first evolutionary iteration, download the initial subjectively most satisfy-
ing 3D model. This is regarded as the initial current best

2. During iterations, if an evolved 3D model is subjectively more satisfying than the
current best, download it as the new current best. Keep track of the evolutionary
iteration

3. In the tenth iteration, download the subjectively most satisfying 3D model re-
gardless of whether it is subjectively more satisfying than the overall current
best

4. Report on:
a) Subjectively most satisfying 3D model
b) Subjectively most satisfying 3D model from the tenth evolutionary iteration.

This can be the same as the one from a)
c) In which iteration the subjectively most satisfying 3D model occurred
d) How satisfying the subjectively most satisfying 3D model turned out

6.2. Approach 29

e) How satisfying the subjectively most satisfying 3D model in the tenth evo-
lutionary iteration turned out. This can be the same as the one from d)

After the six tasks, the volunteers were asked to report on:

• The overall user experience: A scale from 1 to 10, where 1 is exhaustive and 10
is fun

• The ease of using the web application: A scale from 1 to 10, where 1 is hard and
10 is easy

• Their approach in recreation and creative tasks respectively

• The intuitiveness of Normal mode and Advanced mode respectively

• The user guide and the overall feature set of DeepIE3D

The majority of the answers (10/17) from the questionnaire comes from one sitting.
It was deemed necessary to be in the same location as the volunteers going through
the questionnaire as questions may arise. Furthermore, overseeing the user testing may
lead to valuable observations.

7. Results
This chapter describes the findings in this thesis including, but not limited to, re-
sults from the user testing. For an overall proof of concept, please see this video:
https://www.youtube.com/watch?v=qYwVxKVQZmE. The video concisely shows the
process from interactive evolutionary 3D modelling to a final 3D printed product.

7.1. Evolution
This section displays the results when utilizing mutation and crossover in DeepIE3D.
Furthermore, it touches on the performance of novelty search.

7.1.1. Mutation
Applying mutation in DeepIE3D yields well-behaved results. In Figure 7.1 an initial
model can be seen mutated nine times. The mutations undoubtedly resemble the initial
model while at the same time having slightly different traits; the only outlier is Figure
7.1j.

7.1.2. Crossover
Applying crossover in DeepIE3D yields well-behaved results. In Figure 7.2 and Figure
7.3 two 3D models can be seen crossovered nine times. Crossover has the potential
of mixing traits. Figure 7.2g and Figure 7.3c both show this potential fulfilled: They
undeniably expose traits from both initial models. While the other 3D models are
well-behaved, they are, however, not as easily inferred as crossovers.

7.1.3. Novelty Search
Three different types of Novelty Search (NS) have been tested in DeepIE3D: Novelty
in latent space (latent vectors) and novelty in behavioral space (generated 3D models),
where the behavioral NS searches for novelty in five and ten randomly generated 3D
models respectively.

In Figure 7.4 the resulting 3D model distribution similarity of the different types
of NS can be seen along with the standard distribution of random samples. The
random sampling is the only method used in the DeepIE3D web application for reasons

https://www.youtube.com/watch?v=qYwVxKVQZmE

7.1. Evolution 31

(a) Initial model

(b) (c) (d)

(e) (f) (g)

(h) (i) (j)

Figure 7.1: Result of mutating the same 3D model nine times with a mutation rate of 1.0

32 Results

(a) Initial model 1 (b) Initial model 2

(c) (d) (e)

(f) (g) (h)

(i) (j) (k)

Figure 7.2: First result of crossovering two 3D models nine times

7.1. Evolution 33

(a) Initial model 1 (b) Initial model 2

(c) (d) (e)

(f) (g) (h)

(i) (j) (k)

Figure 7.3: Second result of crossovering two 3D models nine times

34 Results

described in Subsection 8.2.2 and the results seen in Figure 8.2.2. Figure 7.4 depicts
the distribution similarity mean shown as violin plots1.

The similarity mean distribution is found by:

1. Generate nine 3D models using one of the above mentioned methods

2. For each model, calculate the voxel similarity as described in Chapter 3 to all
other 3D models. Average these similarities

3. Repeat 1 and 2 ten times

The above calculation yields ninety data points for each violin plot. It is clear that
behavioral NS, which searches in ten randomly generated 3D models, outperforms all
other versions. Additionally, it is clear that using novelty search in latent space does
not improve novelty compared to simply generating random 3D models.

Figure 7.4: Violin plots of similarity in 3D model distribution. The 3D models are generated
in four ways: Randomly, novelty search in latent space and behavioral novelty
search of 3D models with five or ten comparisons. Each data point is the mean
of a generated 3D model’s similarities to the other generated 3D models

1A violin plot is a method of plotting numeric data. It is similar to a box plot, with the addition
of a rotated kernel density plot on each side

7.2. User Testing 35

7.2. User Testing
This section presents the results from the user testing. Seventeen volunteers partici-
pated in the user testing consisting of the six tasks seen in Section 6.2. After each task,
the volunteers answered follow-up questions and uploaded models created in the tasks.
After the six tasks, a row of questions about the overall experience concerning the web
application were answered. The seventeen volunteers come from different backgrounds
and have little to no knowledge about 3D modelling, evolution or computer science in
general.

The questionnaire used in the user testing can be found in Appendix C along with
the answers in Appendix D.

The goal of the tasks is to use ten evolutionary iterations to recreate or create an air-
plane. The volunteers uploaded images of their overall most satisfactory airplane and
the most satisfactory airplane from the final (tenth) evolutionary generation. Figure
7.5 and Figure 7.6 show the images uploaded by the volunteers. The figures consist of
three columns of pairwise comparisons between the final and best 3D model depicting
Airplane 1 (Figure 6.1a), Airplane 2 (Figure 6.1b) and an imaginative airplane respec-
tively. The rows in the figures are the results of a specific volunteer. Thus, volunteers
are specified by the same row number in both figures. Figure 7.5 shows the results
from Task 1, Task 2 and Task 5, which are performed in Normal mode. Figure 7.6
shows the results from Task 3, Task 4 and Task 6, which are performed in Advanced
mode. The figures are mainly included to showcase the 3D model results from the user
testing, but are further touched upon in Section 8.3.

After completing a task, the volunteers were asked to report on the following three
considerations:

1. In which evolutionary iteration the subjectively most satisfying 3D model oc-
curred

2. How satisfying the subjectively most satisfying 3D model turned out

3. How satisfying the subjectively most satisfying 3D model in the tenth evolution-
ary iteration turned out

Figure 7.7, Figure 7.8 and Figure 7.9 correspond to the results from consideration
1, 2 and 3 respectively. The subfigures correspond to the tasks from Section 6.2 in the
following way:

(a) is Task 1 (b) is Task 2 (c) is Task 5
(d) is Task 3 (e) is Task 4 (f) is Task 6

The above ordering of tasks and subfigures is chosen in order to have all the tasks re-
garding Normal mode and Advanced mode aligned horizontally. Furthermore, it allows
a vertical comparison of equivalent tasks performed in different modes.

Figure 7.7 shows the distribution of the evolutionary iteration producing the best
3D model in all six tasks.

36 Results

Figure 7.5: 3D models from user testing: Normal mode

7.2. User Testing 37

Figure 7.6: 3D models from user testing: Advanced mode

38 Results

(a) Normal mode
Airplane 1 (6.1a)

(b) Normal mode
Airplane 2 (6.1b)

(c) Normal mode
Imaginative airplane

(d) Advanced mode
Airplane 1 (6.1a)

(e) Advanced mode
Airplane 2 (6.1b)

(f) Advanced mode
Imaginative airplane

Figure 7.7: Histograms showing in which evolutionary iteration the subjectively most sat-
isfying model occurred in each of the six tasks in the user testing

Figure 7.8 shows the distribution of subjective satisfaction level of the best 3D model
in all six tasks.

Figure 7.9 shows the distribution of subjective satisfaction level of the best of the
last 3D models in all six tasks.

After completing the six tasks, the volunteers were asked to evaluate the overall user
experience and the ease of using the web application. The results can be seen in Figure
7.10a and Figure 7.10b respectively. These results are discussed in Section 8.3.

Lastly, the volunteers were asked questions about the following:

• Their approach in the recreation and the creative tasks respectively

• The intuitiveness of Normal mode and Advanced mode respectively

• The user guide and the overall feature set of DeepIE3D

The asnwers to the three questions along with all other raw answers and results can
be seen in Appendix D. The findings are discussed in 8.3.

7.2. User Testing 39

(a) Normal mode
Airplane 1 (6.1a)

(b) Normal mode
Airplane 2 (6.1b)

(c) Normal mode
Imaginative airplane

(d) Advanced mode
Airplane 1 (6.1a)

(e) Advanced mode
Airplane 2 (6.1b)

(f) Advanced mode
Imaginative airplane

Figure 7.8: Histograms showing subjective satisfaction levels of the best model found in
each of the six tasks in the user testing. Rated on a scale from 1 to 10

(a) Normal model
Airplane 1 (6.1a)

(b) Normal mode
Airplane 2 (6.1b)

(c) Normal mode
Imaginative airplane

(d) Advanced mode
Airplane 1 (6.1a)

(e) Advanced mode
Airplane 2 (6.1b)

(f) Advanced mode
Imaginative airplane

Figure 7.9: Histograms showing subjective satisfaction levels of the best of the last models
found in each of the six tasks in the user testing. Rated on a scale from 1 to 10

40 Results

(a) (b)

Figure 7.10: Histograms depicting the overall evaluation given after using the DeepIE3D
web application throughout all six tasks. (a) shows the the volunteers’ per-
ceptions of the user experience. (b) shows the volunteers’ perceptions of the
ease of using the web application. Both are rated on a scale from 1 to 10

7.3. 3D Printing
One of the end products in DeepIE3D is an STL2 file: After settling on a subjectively
satisfying 3D model, it is possible to download it as an STL file. This has many usages
including easy conversion to Minecraft3 models and 3D printing. Figure 7.11 shows
nine prints made from STL files exported from DeepIE3D. The various 3D prints all
have distorted features; some due to the nature of 3D printing and some due to the
nature of the 3D models exported from DeepIE3D. When choosing a 3D model to
export from DeepIE3D, the user has no way of knowing if the 3D model is solid inside.
This can cause problems when printing.

2Definition of STL: https://en.wikipedia.org/wiki/STL_(file_format)
3Minecraft: https://www.minecraft.net

https://en.wikipedia.org/wiki/STL_(file_format)
https://www.minecraft.net

7.3. 3D Printing 41

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 7.11: Nine examples of 3D printed STL files exported from the DeepIE3D web ap-
plication. The colors are arbitrary and has no meaning. (a), (c), (f) and (i)
are printed on an Ultimaker 2 Extended; (b), (g) and (h) are printed on an
Ultimaker 2+; and (d) and (e) are printed on a Makerbot Replicator

8. Analysis & Discussion
This chapter is a discussion and analysis of the findings from Chapter 7. Additionally,
it features an analysis of the PacWGAN-GP2 and the application of the evolutionary
principles utilized in DeepIE3D.

8.1. Generative Adversarial Networks
This section analyzes the correctness of the GAN used in DeepIE3D; both the training
of it and its ability to produce distinct 3D models.

8.1.1. Training
The final architecture in DeepIE3D is PacWGAN-GP2 trained on 512 hand-picked 3D
models from the airplane domain.

Figure 8.1 and Figure 8.2 illustrate the training of the final PacWGAN-GP2. Both
depict a timeline starting from epoch = 0 ending in epoch = 10, 000. From 0 to 10, 000,
3D models are generated in a pseudo-logarithmic fashion: Ten 3D models from 0 to 100
epochs (one every tenth), ten 3D models from 100 to 300 epochs (one every twentieth),
ten 3D models from 300 to 700 epochs (one every fortieth) and so on. The two latent
vectors used for generation are randomly generated using PyTorch with the same seed.
This enables reproducibility while being able to explore how the generator responds to
the same latent vectors throughout training. The specific latent vectors used for the
two figures can be seen in Appendix B.

The two examples of training show that after relatively few epochs (around 80-
100), the generator produces acceptable 3D models. Furthermore, the training process
displays early stability as the 3D models resemble the overall same airplane type. These
are among the key attributes of WGAN and thus WGAN-GP [5].

What cannot be seen in the two examples is the overall performance of the model.
While generating 3D models during epoch = 0 through epoch = 10, 000, the overall
state of the 3D models was observed. It was seen that even though the 3D models in
Figure 8.1 and Figure 8.2 resembled airplanes and stayed in almost the same shape, the
overall state was not as stable: The 3D models improve throughout far more epochs
than seen in the two examples. Furthermore, instances where the same latent vector
generated different airplanes during many epochs were seen. In Figure 8.2 such a
change is apparent on a minor scale. However, the mapping of the latent vector space
to the 3D model space seems to stabilize when reaching around 6, 000 epochs.

8.1. Generative Adversarial Networks 43

Figure 8.1: First example of 3D models generated during epoch = 0 through epoch = 10, 000
when training the final PacWGAN-GP2

44 Analysis & Discussion

Figure 8.2: Second example of 3D models generated during epoch = 0 through epoch =
10, 000 when training the final PacWGAN-GP2

8.1. Generative Adversarial Networks 45

As the 3D model quality is hard to measure quantitatively, the two figures and the
simultaneous observations only provide an indication of how well the training process
behaves.

The WGAN-GP framework is chosen in part because of its ability to address the
vanishing gradient problem. The vanishing gradient problem results in a generator
not being able to learn correctly. Hence, the generator is unable to progressively
produce better samples. Further indication of a correct training process can thus be
seen in the gradients. The gradients behave well during the entire training process,
which indicates the generator keeps learning. The gradients and the gradient penalties,
which are derived from the gradient norms, can be seen in Appendix E.

8.1.2. 3D Model Distribution
As mentioned, GANs are prone to mode collapse. To mitigate this, WGAN-GP is
employed. To further extend the number of distinct modes, PacGAN is employed.
The following demonstrates that mode collapse is mitigated in the final PacWGAN-
GP2.

Figure 8.3 shows the similarity between generated 3D models and their most similar
data point in the training set. None of the generated 3D models have a similarity of
100% which could have indicated overfitting. As the generator tries to produce 3D
models from a specific domain (e.g. airplanes or chairs), the similarity should be high
as the generated 3D models preferably are close to something that already exists.

Figure 8.4a shows the internal mean similarity distribution of the following: The
training set consisting of 512 hand-picked 3D models and 512 generated 3D mod-
els. Figure 8.4b shows the distribution of the voxel count of the training set and the
generated 3D models respectively. Figure 8.4a and 8.4b in unison demonstrate the
distributions being very similar. This indicates that the number of modes, produced
by the generator, is close to the number of modes found in the training set. It further
demonstrates that these modes are alike.

These findings in themselves could indicate overfitting. However, Figure 8.3 shows
that the similarity between the generated 3D models and the training set is not suspi-
ciously high. Thus, the above demonstrates a generator capable of producing diverse
and well-behaved 3D models while not overfitting.

46 Analysis & Discussion

Figure 8.3: Violinplot depicting the similarity between 512 randomly generated 3D models
of airplanes and their best fit in the training set. Each generated 3D model is
compared to all 3D models in the training set and the similarity is reported as
a percentage of voxels in the same positions

8.2. Evolution 47

(a) (b)

Figure 8.4: Violinplots depicting comparisons of distributions between the training set and
generated 3D models. (a) shows the comparison of internal mean similarity
distribution between the training set and the generated 3D models. The mean
similarity is calculated as a mean of the similarities in their sets. All 3D models
in the training set compare voxel positions to all the other training set 3D
models in order to produce a similarity percentage. The same is done for 512
3D models produced by the generator. (b) shows the comparison of voxel count
distribution between the training set and the generated 3D models

8.2. Evolution
This section considers the impact and correctness of the evolutionary principles em-
ployed in DeepIE3D. Furthermore, it addresses why behavioral Novelty Search (NS) is
not included in the final web application.

8.2.1. Mutation & Crossover
Mutation and crossover is the foundation of the evolutionary flow in DeepIE3D. They
are the only means of guiding the 3D models toward a target.

The purpose of mutating in DeepIE3D is to alter one or more 3D models to obtain
modified but similar 3D model(s). Figure 7.1 shows that mutation works in the in-
tended way, producing 3D models with a clear likeness but with distinct traits. As the
mutation rate in Figure 7.1 is 1.0, the degree of difference between the original and its
mutations is at its peak. Thus, with a lower mutation rate, the chance of having too
heavily modified 3D models, such as Figure 7.1j, is likewise lower.

The purpose of crossovering in DeepIE3D is to obtain 3D models that are hybrids
of distinct traits from two chosen 3D models. Figure 7.2 and Figure 7.3 show the
potential of crossover, as both produce airplanes that clearly have traits from both
initial 3D models. It does not perform as consistently well as mutation, since only a
few airplanes in each figure contain traits from both its parents. When using the web
application, only a limited number of crossovers can be performed: In Normal mode,

48 Analysis & Discussion

the number of crossovers is not transparently up to the user but is given by the original
DeepIE algorithm. This limits the number of crossovers, leading to a lower chance of
a successful one. In Advanced mode, the user can choose to make up to nine crossovers
of the same two objects. This increases the chance of getting a crossover where traits
from both parents can be seen. However, it will not produce as many clearly modified
3D models as nine mutations will. The benefits of crossover can be considerable, as
it can modify 3D models towards a target 3D model in contrast to mutation. This
definitely justifies the use of crossover.

Figure 8.5 shows the lineage of chosen 3D models through the evolutionary process
of DeepIE3D. The lineage is recorded by one of the volunteers in the user testing but is
done separately from the tasks in the questionnaire. It depicts the 3D models marked
as candidate(s) for evolution in each evolutionary iteration and is performed in Normal
mode. The goal of the lineage process is to recreate Airplane 2 (Figure 6.1b). A clear
improvement can be seen in overall shape of the airplane from evolutionary iteration
one to five. At evolutionary iteration five, the major missing trait is the propeller at the
front of the airplane. This is found in evolutionary iteration six. The most satisfying
airplane to the volunteer is expressed as being the second airplane in evolutionary
iteration seven, meaning that the evolutionary process did not improve during the last
three evolutionary iterations. This is possibly due to the generator not being able to
produce a more satisfying airplane: There is a limit to how well a 64×64×64 3D voxel
model can resemble Airplane 2.

Figure 8.5 proves that mutation and crossover through Normal mode is capable of
producing the intended alterations wanted by a user in order to progress towards a
target 3D model.

Advanced mode contains all evolutionary principles which the DeepIE algorithm em-
ploys. As the exact process happening behind the scenes in Figure 8.5 could be reen-
acted in Advanced mode, the lineage of that process is not shown. Furthermore, it would
be extensive and confusing as the entire list of nine evolutions for each evolutionary
iteration should be shown.

8.2.2. Novelty Search
The novelty metric used in DeepIE3D is the novelty of the latent vectors, not the
novelty of the behavior, i.e. the generated 3D models. The performance when doing
behavioral NS has naturally been measured, as this would have been the preferred
metric. However, as seen in Figure 8.6, it will greatly increase the response time of
each evolutionary iteration of 3D modelling, thus causing frustration and user fatigue;
counteracting a main priority in this thesis. For comparison, exploring novelty in the
latent space takes less than a second, even when nine new 3D models are needed. Please
refer to Appendix A for the behavioral NS algorithm implemented in DeepIE3D.

8.2. Evolution 49

Figure 8.5: Lineage of chosen 3D models through ten evolutionary iterations when recreat-
ing Airplane 2 (Figure 6.1b) in Normal mode (Task 2)

50 Analysis & Discussion

Figure 8.6: Line plot showing the performance of behavioral NS. The lowest amount of new
models to generate is 14, yielding an extra wait time of 10 seconds to the web
application user - or as high as 22 seconds when searching in 10 random 3D
models which could be argued crucial to ensure novelty

Unfortunately, as seen in Subsection 7.1.3, the NS in latent space does not yield
improvements compared to simply generating random 3D models. This leads to any
kind of NS being disabled in the web application even though all are implemented.

The benefits of adding behavioral NS to DeepIE3D are clearly apparent, but the
performance loss is too great. However, adding behavioral NS to DeepIE in less com-
putationally heavy domains would likely be viable.

8.3. User Testing
The user testing of DeepIE3D was performed to assess its performance and user expe-
rience. This section elaborates on the results shown in Subsection 7.2.

Ten paired-sample t-tests1 have been performed to evaluate the outcomes of the
different user testing tasks; results can be seen in Table 8.1. With p = 0.01, none of
the tests are statisticly significant.

1The paired-sample t-test is used to compare two sample means where there is a one-to-one
correspondence between the samples [21]

8.3. User Testing 51

A1 A2 µ1 µ2 σ1 σ2 p Significant?
Normal mode Airplane 1
Iteration ratio (Task 1)

Normal mode Airplane 2
Iteration ratio (Task 2) 0.577 0.794 0.263 0.230 0.043 No

Advanced mode Airplane 1
Iteration ratio (Task 3)

Advanced mode Airplane 2
Iteration ratio (Task 4) 0.688 0.841 0.280 0.245 0.126 No

Normal mode Airplane 1
Iteration ratio (Task 1)

Advanced mode Airplane 1
Iteration ratio (Task 3) 0.577 0.688 0.263 0.280 0.237 No

Normal mode Airplane 2
Iteration ratio (Task 2)

Advanced mode Airplane 2
Iteration ratio (Task 4) 0.794 0.841 0.230 0.245 0.592 No

Normal mode Imaginative
Iteration ratio (Task 5)

Advanced mode Imaginative
Iteration ratio (Task 6) 0.770 0.711 0.259 0.228 0.498 No

Normal mode Airplane 1
Satisfaction (Task 1)

Normal mode Airplane 2
Satisfaction (Task 2) 6.588 6.176 1.660 1.667 0.502 No

Advanced mode Airplane 1
Satisfaction (Task 3)

Advanced mode Airplane 2
Satisfaction (Task 4) 7.588 7.176 1.660 1.878 0.515 No

Normal mode Airplane 1
Satisfaction (Task 1)

Advanced mode Airplane 1
Satisfaction (Task 3) 6.588 6.176 1.660 1.660 0.080 No

Normal mode Airplane 2
Satisfaction (Task 2)

Advanced mode Airplane 2
Satisfaction (Task 4) 6.176 7.176 1.667 1.878 0.128 No

Normal mode Imaginative
Satisfaction (Task 5)

Advanced mode Imaginative
Satisfaction (Task 6) 7.176 7.058 2.098 2.410 0.848 No

Table 8.1: Ten paired-sample t-tests. Iteration ratio is the ratio between the iteration in
which the best 3D model occurred and total iterations used (10). Ai is the sample
(a set of samples), µi is the sample mean and σi is the standard deviation of the
sample

The relatively high p values lead to several implications: 1. There is no significant
difference between iterations used when recreating Airplane 1 or Airplane 2 in neither
Normal mode nor Advanced mode. 2. There is no significant difference between sat-
isfaction level in the best recreation of Airplane 1 and Airplane 2 in neither Normal
mode nor Advanced mode. 3. There is no significant difference between iterations used
in Normal mode and Advanced mode when recreating either Airplane 1 or Airplane 2.
4. There is no significant difference between satisfaction level of the best recreations in
Normal mode and Advanced mode when recreating either Airplane 1 or Airplane 2. 5.
There is no significant difference in neither iterations used nor satisfaction level when
creating an imaginative plane in either Normal mode or Advanced mode.

The p values are however not the only thing apparent in Table 8.1. The average of
the sample means of iteration ratio is 0.734 with the lowest mean being 0.577. This is a
clear indication of the 3D models getting better via evolution. Furthermore, the sample
means of satisfaction levels are all above 6.1. This is a clear indication of DeepIE3D
being capable of producing subjectively satisfying 3D models. Another indication of
DeepIE3D’s capability is the previously showcased Figure 7.5 and Figure 7.6 in Section
7.2. The authors of this thesis find that most of the best 3D models in the recreation
tasks are satisfyingly close to the intended airplane targets. This is however another
subjective evaluation.

None of the paired-sample t-tests show significant differences between any tasks done

52 Analysis & Discussion

in Normal mode and Advanced mode. This is a clear indication of the two modes being
similarly suited for interactive evolutionary 3D modelling. Thus, users can choose
between the original DeepIE algorithm from Bontrager et al. [2] and the novel custom
approach introduced in this thesis - without compromising performance.

The three above mentioned indications are key insights in this thesis: DeepIE3D
successfully employs evolution to such a degree that users achieve subjectively satisfying
results. At the same time, the novel custom approach, Advanced mode, has been
implemented successfully.

Subsequent paragraphs goes into depth with results from the user testing.

Strategies After completing the six tasks, the volunteers were asked to reflect on their
choice of strategy in the recreation and creative tasks respectively.

In Normal mode, the volunteers simply choose their candidate(s) for evolution and
instantiate the next evolutionary iteration. In Advanced mode, variations of strategies
were observed. Some choose to fully exploit the list of actions for the next evolutionary
iteration. This often entails many mutations/crossovers of one favored 3D model, few
mutations/crossovers of less favored 3D models and keeping the best 3D model. Others
either do not fully exploit the list or choose to generate many new 3D models in the next
evolutionary iteration. Another variation in Advanced mode is the number of features
utilized. One volunteer finds the crossover feature cumbersome, since it involves many
clicks and thus chooses not to use it as extensively as the mutate feature. Few choose
not to use it at all, as the effect is not clear to them. Most volunteers choose to use
the keep feature. All use the mutate feature.

The volunteers do not modify their strategy much during the tasks. The strategies
in the recreation tasks can be divided into four categories:

1. Select Best Likeness

2. Choose Specific Traits

3. Consider Both Specific Traits and Best Likeness

4. Select Best Likeness First, Then Choose Specific Traits

The most commonly applied strategy is Strategy 1 with 8/17 volunteers following
it. This strategy consists of marking one or more 3D models with overall likeness to
the target as candidate(s) for evolution. The strategy corresponds to the ’Select Best
Likeness’ strategy from Bontrager et al. [2]. The way the strategy is applied varies
between volunteers. Similarly to Bontrager et al. [2], two variations of Strategy 1 were
observed: Choosing one similar 3D model or choosing some or all similar 3D models.

Strategy 2 is the second most applied strategy with 4/17 volunteers following it. It
focuses on distinct traits of the 3D models. Evolution candidate(s) are marked with

8.3. User Testing 53

the intent of having the modified 3D models in the next evolutionary iteration possibly
being closer to the target.

Strategy 3 and 4 are combinations of Strategy 1 and 2. Strategy 3 enforces an
approach, where Strategy 1 and 2 are applied at the same time. It often entails marking
more 3D models as candidates for evolution than both Strategy 1 and 2. Strategy 4 is
only followed by one volunteer. It can be described as first following Strategy 1 until
the 3D models become similar to the targe. Then choosing 3D models with distinct
traits in order to have the 3D models from Strategy 1 get the traits through evolution.

The strategies in the creative tasks are not consistent. The reason for this is twofold:
First, the question about the strategy used in Task 5 and Task 6 is misunderstood as
the strategy used in Task 3 and Task 4 by some volunteers. This might be due to the
complexity of the questionnaire. Second, even though it is stated that the 3D models in
the tasks should be without a preliminary view of the final airplane, some volunteers
have just that. By reviewing the answers seemingly about the right tasks and by
observing the volunteers, some indication of strategy can be formed: Strategies similar
to the ones followed in the recreation tasks are applied. The goal of the evolutionary
process is, however, different, as many volunteers want to make distorted airplanes
after the four tasks concerned with precision.

One common observation throughout all strategies is that situations arise, where
volunteers do not find any 3D models satisfying enough to mark as candidate(s) for
evolution. Some volunteers expect to get similar results to the ones present when not
choosing any candidate(s). This is intentionally not the case: All previous work is
discarded and the next evolutionary generation consists solely of newly generated 3D
models.

Experience After completing the six tasks, the volunteers were asked to reflect on the
intuitiveness of Normal mode and Advanced mode respectively. 2/17 did not find Normal
mode intuitive, while 3/17 did not find Advanced mode intuitive. While this difference
is small, 6/17 commented on Advanced mode being harder to use than Normal mode.

One volunteer said:

You do not really know what is
happening behind the scenes. It is
faster to use, as you dont have to
decide on many different options.

- Volunteer 12
On the perception of Normal mode

This sums up the general chit-chat overheard while overseeing the user testing: The
volunteers are happy about the ease of Normal mode, but do not have a clue about ”...
what is happening behind the scenes ...”.

54 Analysis & Discussion

On the other hand, the perception of Advanced mode is quite the opposite. One
volunteer said:

It was a little hard the first time.
Second and third it provided a lot of
info of what was happening. Took a
little longer.

- Volunteer 12
On the perception of Advanced mode

When grasping the amount of information displayed in Advanced mode, the volun-
teers seem to enjoy the added control. These opposite perceptions of Normal mode and
Advanced mode is the characteristic clash between how user friendly an application is
and how configurable it is. Luckily, DeepIE3D caters for both user types.

However, the perceptions all come from volunteers not being familiar with 3D mod-
elling, evolution or computer science in general. It is highly likely that this creates a
bias towards favoring Normal mode, but unfortunately this cannot be supported by
evidence in this thesis.

After completing the six tasks, the volunteers were further asked to assess the overall
user experience and the ease of using the web application. The user experience is graded
from 1 to 10, where 1 is an exhaustive experience and 10 is a fun experience. The mean
of the user experience rating is µ = 7.65 and the median is Md = 8. This high rating
suggests that DeepIE3D to a certain degree mitigates user fatigue - at least within ten
evolutionary iterations.

The ease of using the web application uses the same scale (1 being hard, 10 being
easy). The mean of the ease rating is µ = 7.53 and the median is Md = 8. This
compliments the user experience rating while consolidating DeepIE3D’s ability to adapt
a complex subject to a user friendly web application.

9. Future Work
DeepIE3D is already capable of performing deep interactive 3D modelling to a satisfy-
ing degree. Given more time, some areas of improvements may be beneficial to explore.

Data An obvious way to improve the generative model is to alter the data set. The
training set used for the final models in this thesis consists of 512 handpicked 3D models
of airplanes. The number of modes found in the data set naturally increases with the
number of data points, thus a larger data set could lead to a generator able to produce a
wider range of modes. Additionally in regards to the training set, raising the resolution
of the 3D models in the training set will increase the resolution of the generated 3D
models to the same degree. An increase in quality would ensure satisfaction in both real
life 3D printing and software applications utilizing 3D models. However, both alter-
ations entails substantially longer training time and render time in the web application.

Class-conditional GAN The generative model in DeepIE3D is trained to generate
3D models from one domain (e.g. airplanes or chairs). This is the case, as it strives to
learn a probability distribution in a set of artifacts. If the artifacts in a training set are
not in the same domain, the distribution is hard to imitate. Mirza and Osindero [22]
introduce a conditional version of GAN (CGAN), which relies on auxiliary information
such as class labels. This enables an option to direct the generation process towards
producing artifacts from distinct domains. Thus, one-to-many mappings are used to
produce a conditional predictive distribution [23]. The only alteration to the networks
is that both take the auxiliary information in addition to the original input. Using a
CGAN in DeepIE3D would enable a single model to produce 3D models from distinct
domains (e.g. both airplanes and chairs). Another application of CGAN in DeepIE3D
would be using descriptive user tags as the auxiliary information. These tags would
make it possible to produce 3D models matching a selection of user tags. This could
even be applied within a category such as airplanes in order to produce a more specific
airplane (e.g. a WW2 fighter or a private jet).

A framework similar to CGAN is introduced by Brock et al. [24]: It is called Big-
GAN. In addition to being class-condition, BigGAN are capable of synthesizing 2D
images of remarkable high resolution. This possibility of distinct artifact domains in
combination with high resolution would be interesting to explore in 3D. However, it
requires a vast amount of computational power.

Improving WGAN-GP Training The training process of WGAN-GP is not per-

56 Future Work

fect. It addresses the mode collapse and vanishing gradient problem experienced in the
original GAN and DCGAN. However, it does not create a perfect generator, as not
all modes can be created. PacGAN helps the generator explore more modes, but it
does not ensure that all modes are present. Wei et al. [25] introduce an improvement
of WGAN-GP training. It points out a fault of gradient penalty: As the continuity
is checked with interpolations of real and fake data points, it can neglect to check the
continuity of regions close to the real data. Wei et al. [25] mitigate this by checking the
continuity in two perturbed versions of a real data point. The two perturbations are
close to the real data point. Using this improved training of WGAN-GP has in other
cases led to more modes and higher quality images. Thus, applying it to the training
process of the generative model used in DeepIE3D could widen the range of modes.

Scale-specific Controls Adding scale-specific controls in order to generate artifacts
in DeepIE3D would be an interesting field to explore. Karras et al. [26] introduce
StyleGAN, an alternative generator architecture. It provides an automatically learned,
unsupervised separation of high-level attributes and stochastic variation in the gener-
ated samples. Karras et al. [26] have only shown this behaviour for GANs trained to
generate images. The separation of high-level attributes and stochastic variation en-
ables intuitive scale-specific mixing and interpolation operations [26]. If the generator
architecture can be applied to generate 3D models in voxel space, it will enable the
user to tune specific traits of a 3D model. As StyleGAN separates coarse to fine styles
in the artifacts, many different traits can be modified. Coarse styles in the 2D image
domain could be pose, general hair style, face shape etc.; where finer styles would be
colors and specific facial features. Karras et al. [26] also introduce a term called style-
mixing. Style-mixing enables mixes of two latent vectors in a crossover-like fashion in
which coarse to fine styles can be applied from one artifact to another. The advan-
tages of StyleGAN can be applied in multiple fashions in DeepIE3D: In Normal mode,
the mutations and crossovers can differ in degree of style, thus creating a wider range
of evolutions. In Advanced mode, the degree of styles can be decided for mutations
and crossovers by the user. Crossovers could be much more specific, e.g. having coarse
styles of one artifact and fine styles of another. This could make crossovers more useful.

Expert User Testing DeepIE3D is solely user tested on novice users with a lim-
ited understanding of the computer science field. Further user testing on advanced
users would explore the capabilities DeepIE3D as a tool for real life and production
applications. Testing users with much experience in 3D modeling would be escpecially
impactful.

10. Conclusion
The novel framework, DeepIE3D, introduced in this thesis can successfully be applied
as a 3D modelling tool. The user testing demonstrates that novice users are capable of
producing subjectively satisfying 3D models using DeepIE3D while not suffering from
user fatigue. This applies to both recreation and creative 3D modelling tasks. The
results of the tasks in the user testing are similar to those found in DeepIE [2]. This
indicates a correct implementation of the original approach with a favorable outcome.
Furthermore, the tasks performed using the novel custom approach, Advanced mode,
produce equally positive results. It is thus deemed to be just as adequate, while offering
a more customizable approach to end users wanting more control.

The above clearly indicates the compatibility of the DeepIE approach in the domain
of 3D models. Furthermore, it shows the correctness of the underlying architecture in
DeepIE3D. In continuation of the observations from user testing, the results from a
wide range of experiments ensures exactly this correctness. Thus, it can be concluded
that utilizing PacWGAN-GP2 as phenotype/genotype mapping from latent space to
3D model space is sound. The experiments further demonstrate that the PacWGAN-
GP2 used in DeepIE3D is capable of generating a plethora of different 3D models.

DeepIE3D also proves its worth in practical applications: The process of converting
a 3D model exported from DeepIE3D to a 3D printed model is simple and easy.

The application of Novelty Search (NS) in DeepIE3D does not yield favorable re-
sults within a manageable time frame: Performing NS in latent space does not improve
novelty in behavioral space, while performing NS in behavioral space is too computa-
tionally expensive, making it infeasible in practice. However, applying behavioral NS
in less computationally heavy domains may be viable.

DeepIE3D is already capable of performing deep interactive 3D modelling to a satis-
fying degree, but possible improvement could increase its utility. A common category
of possible improvements concerns the underlying architecture. These improvements
can lead to a single generator capable of producing 3D models from distinct domains,
the capability of scale-specific controls and improved resolution in the generated 3D
models.

Bibliography
[1] Alec Radford, Luke Metz, and Soumith Chintala. Unsupervised representation

learning with deep convolutional generative adversarial networks. CoRR, 2016.
URL https://arxiv.org/pdf/1511.06434.pdf.

[2] Philip Bontrager, Wending Lin, Julian Togelius, and Sebastian Risi. Deep inter-
active evolution. European Conference on the Applications of Evolutionary, Com-
putation (EvoApplications), 2018. URL http://sebastianrisi.com/wp-content/
uploads/bontrager_evomusart18.pdf.

[3] Jiajun Wu, Chengkai Zhang, Tianfan Xue, William T. Freeman, and Joshua B.
Tenenbaum. Learning a probabilistic latent space of object shapes via 3d
generative-adversarial modeling. NIPS, 2016. URL http://3dgan.csail.mit.edu/
papers/3dgan_nips.pdf.

[4] Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley,
Sherjil Ozair, Aaron Courville, and Yoshua Bengio. Generative adversarial nets.
Advances in Neural Information Processing Systems 27 (NIPS 2014), pages 2672–
2680, 2014. URL http://papers.nips.cc/paper/5423-generative-adversarial-nets.
pdf.

[5] Martin Arjovsky, Soumith Chintala, and Léon Bottou. Wasserstein gan. CoRR,
2017. URL https://arxiv.org/pdf/1701.07875.pdf.

[6] Sergey Ioffe and Christian Szegedy. Batch normalization: Accelerating deep
network training by reducing internal covariate shift. ICML 2015, 2015. URL
https://arxiv.org/pdf/1502.03167.pdf.

[7] Ishaan Gulrajani, Faruk Ahmed, Martin Arjovsky, Vincent Dumoulin, and Aaron
Courville. Improved training of wasserstein gans. Published in NIPS 2017, 2017.
URL https://arxiv.org/pdf/1704.00028.pdf.

[8] Henry Gouk, Eibe Frank, Bernhard Pfahringer, and Michael Cree. Regularisation
of neural networks by enforcing lipschitz continuity. CoRR, 2018. URL https:
//arxiv.org/pdf/1804.04368.pdf.

[9] Cédric Villani. Optimal Transport: Old and New (Grundlehren der mathematis-
chen Wissenschaften Book 338). Springer, oct 2008. URL https://www.xarg.org/
ref/a/B00FC7F5OM/.

https://arxiv.org/pdf/1511.06434.pdf
http://sebastianrisi.com/wp-content/uploads/bontrager_evomusart18.pdf
http://sebastianrisi.com/wp-content/uploads/bontrager_evomusart18.pdf
http://3dgan.csail.mit.edu/papers/3dgan_nips.pdf
http://3dgan.csail.mit.edu/papers/3dgan_nips.pdf
http://papers.nips.cc/paper/5423-generative-adversarial-nets.pdf
http://papers.nips.cc/paper/5423-generative-adversarial-nets.pdf
https://arxiv.org/pdf/1701.07875.pdf
https://arxiv.org/pdf/1502.03167.pdf
https://arxiv.org/pdf/1704.00028.pdf
https://arxiv.org/pdf/1804.04368.pdf
https://arxiv.org/pdf/1804.04368.pdf
https://www.xarg.org/ref/a/B00FC7F5OM/
https://www.xarg.org/ref/a/B00FC7F5OM/

Bibliography 59

[10] Zinan Lin, Ashish Khetan, Giulia Fanti, and Sewoong Oh. Pacgan: The power
of two samples in generative adversarial networks. NeurIPS 2018, 2017. URL
https://arxiv.org/pdf/1712.04086.pdf.

[11] Jerry Liu, Fisher Yu, and Thomas A. Funkhouser. Interactive 3d modeling with a
generative adversarial network. CoRR, abs/1706.05170, 2017. URL https://arxiv.
org/pdf/1706.05170.pdf.

[12] Brian G. Woolley and Kenneth Stanley. A novel human-computer collaboration:
combining novelty search with interactive evolution. GECCO 2014, 07 2014. URL
https://eplex.cs.ucf.edu/papers/woolley_gecco14.pdf.

[13] GitHub user: rimchang. 3dgan-pytorch, 2017. URL https://github.com/
rimchang/3DGAN-Pytorch.

[14] PyTorch. Torch.nn, 2019. URL https://pytorch.org/docs/stable/nn.html.

[15] Soumith Chintala. Gan hacks, 2016. URL https://github.com/soumith/ganhacks.

[16] Daniel Sieta. Understanding generative adversarial net-
works, 2017. URL https://danieltakeshi.github.io/2017/03/05/
understanding-generative-adversarial-networks/.

[17] Luke Metz, Ben Poole, David Pfau, and Jascha Sohl-Dickstein. Unrolled generative
adversarial networks. CoRR, abs/1611.02163, 2017. URL https://arxiv.org/pdf/
1611.02163.pdf.

[18] Diederik P. Kingma and Jimmy Ba. Adam: A method for stochastic optimization.
CLR 2015, 2014. URL https://arxiv.org/pdf/1412.6980.pdf.

[19] PyTorch. Torch.optim, 2019. URL https://pytorch.org/docs/stable/optim.html.

[20] Tom White. Sampling generative networks. NIPS 2016, 2016. URL https://arxiv.
org/pdf/1609.04468.pdf.

[21] Evie McCrum-Gardner. Which is the correct statistical test to use? British
Journal of Oral and Maxillofacial Surgery, 46(1):38 – 41, 2008. ISSN 0266-
4356. doi: https://doi.org/10.1016/j.bjoms.2007.09.002. URL http://www.
sciencedirect.com/science/article/pii/S0266435607004378.

[22] Mehdi Mirza and Simon Osindero. Conditional generative adversarial nets. CoRR,
abs/1411.1784, 2014. URL https://arxiv.org/pdf/1411.1784.pdf.

[23] Vincent Chen, Liezl Puzon, and Christina Wadsworth. Class-conditional su-
perresolution with gans. 2017. URL https://pdfs.semanticscholar.org/e1de/
667ec1dc1f255b3b3810af8dff4ad355c337.pdf.

https://arxiv.org/pdf/1712.04086.pdf
https://arxiv.org/pdf/1706.05170.pdf
https://arxiv.org/pdf/1706.05170.pdf
https://eplex.cs.ucf.edu/papers/woolley_gecco14.pdf
https://github.com/rimchang/3DGAN-Pytorch
https://github.com/rimchang/3DGAN-Pytorch
https://pytorch.org/docs/stable/nn.html
https://github.com/soumith/ganhacks
https://danieltakeshi.github.io/2017/03/05/understanding-generative-adversarial-networks/
https://danieltakeshi.github.io/2017/03/05/understanding-generative-adversarial-networks/
https://arxiv.org/pdf/1611.02163.pdf
https://arxiv.org/pdf/1611.02163.pdf
https://arxiv.org/pdf/1412.6980.pdf
https://pytorch.org/docs/stable/optim.html
https://arxiv.org/pdf/1609.04468.pdf
https://arxiv.org/pdf/1609.04468.pdf
http://www.sciencedirect.com/science/article/pii/S0266435607004378
http://www.sciencedirect.com/science/article/pii/S0266435607004378
https://arxiv.org/pdf/1411.1784.pdf
https://pdfs.semanticscholar.org/e1de/667ec1dc1f255b3b3810af8dff4ad355c337.pdf
https://pdfs.semanticscholar.org/e1de/667ec1dc1f255b3b3810af8dff4ad355c337.pdf

60 Bibliography

[24] Andrew Brock, Jeff Donahue, and Karen Simonyan. Large scale GAN training
for high fidelity natural image synthesis. CoRR, abs/1809.11096, 2018. URL
http://arxiv.org/abs/1809.11096.

[25] Xiang Wei, Boqing Gong, Zixia Liu, Wei Lu, and Liqiang Wang. Improving the
improved training of wasserstein gans: A consistency term and its dual effect.
CoRR, abs/1803.01541, 2018. URL https://arxiv.org/pdf/1803.01541.pdf.

[26] Tero Karras, Samuli Laine, and Timo Aila. A style-based generator architecture
for generative adversarial networks. CoRR, abs/1812.04948, 2018. URL https:
//arxiv.org/pdf/1812.04948.pdf.

http://arxiv.org/abs/1809.11096
https://arxiv.org/pdf/1803.01541.pdf
https://arxiv.org/pdf/1812.04948.pdf
https://arxiv.org/pdf/1812.04948.pdf

A. Behavioral Novelty Search

Algorithm 2: Novelty Search in Behavioral Space
Defaults: m← 9, n← 200, k ← 10

1 Begin
2 Gθ ← pre-trained generator // DeepIE3D uses PacWGAN-GP2
3 Z ← m by n matrix where Zi,j ∼ N (µ, σ2)
4 indices← GetChosenModels() // UI is responsible for this
5 BehavioralNoveltySearch(Zindices, Gθ)
6 Function BehavioralNoveltySearch(Z, G):
7 models← EMPTY LIST
8 if Z length == 0 then
9 noise← vector of length n where noisei ∼ N (µ, σ2)

10 Z ← Z + noise

11 end
12 foreach vector v of the matrix Z do
13 models.add(G(v))
14 end
15 while Z length < m do
16 (tempZ, tempModels)← GenerateModels(G, k)
17 similarity ← 100
18 index← −1
19 foreach (tempIndex, tempModel) of enumerate(tempModels) do
20 tempSimilarity ← GetSimilarity(tempModel, models)
21 if tempSimilarity < similarity then
22 similarity ← tempSimilarity
23 index← tempIndex

24 end
25 end
26 Z ← Z + tempZindex

27 models.add(G(tempZindex))
28 end
29 return Z

62 Behavioral Novelty Search

30

31 Function GenerateModels(G, k):
32 tempModels← EMPTY LIST
33 tempZ ← k by n matrix where Zi,j ∼ N (µ, σ2)
34 foreach vector v of the matrix tempZ do
35 tempModels.add(G(v))
36 end
37 return (tempZ, tempModels)
38 Function GetSimilarity(model, models):
39 nonzeros← model.nonzero() // non-zero elements in model
40 voxelCount← 0
41 foreach tempModel of models do
42 foreach (x,y,z) of nonzeros do
43 if tempModel[x][y][z] == 1 then
44 voxelCount← voxelCount+ 1
45 end
46 end
47 end

48 return voxelCount
models length

nonzeros length · 100

// Mean percentage similarity

49 end

B. Latent Vectors Used in Training
Analysis

Latent vector used in Figure 8.1:

[
-1.0408011674880981, 0.9166041612625122, -1.3041905164718628,
-1.1096783876419067, -1.2187780141830444, 1.1675925254821777,
-1.0573921203613281, -0.11883937567472458, -0.9078398942947388,
0.34522223472595215, -0.5713335871696472, -0.2351086437702179,
1.0076055526733398, -0.7528814673423767, -0.22499920427799225,
-0.43268606066703796, -1.5071438550949097, -0.4585607945919037,
-0.8480006456375122, 0.5266043543815613, 0.029916180297732353,
-0.04983803257346153, 1.0650780200958252, 0.8860366940498352,
0.4640183746814728, -0.4986324608325958, 0.12886369228363037,
2.7630667686462402, 0.14047646522521973, 1.1191014051437378,
0.315231591463089, 1.7527765035629272, -0.7649639248847961,
1.8298852443695068, -0.27840104699134827, -0.2719452679157257,
-1.2944107055664062, -0.02431253343820572, -0.23535971343517303,
-0.7087094783782959, 1.1566312313079834, 0.42960160970687866,
-1.1873589754104614, -0.7467758655548096, -0.9319808483123779,
-0.8578645586967468, -0.9647331237792969, -0.0991455465555191,
-1.0189824104309082, 0.31567901372909546, -1.6035629510879517,
1.8493320941925049, 0.04472726583480835, 1.5852519273757935,
-0.5912226438522339, 1.1312177181243896, 0.7562121748924255,
-1.2022933959960938, -0.5833470225334167, -0.44068679213523865,
-1.9791470766067505, 0.7787133455276489, -0.7748500108718872,
-0.13975095748901367, 1.141386866569519, -0.635371744632721,
-1.4702459573745728, -0.21338605880737305, -0.8706575632095337,
1.6159112453460693, -0.23564793169498444, 0.9443864226341248,
2.113386631011963, -0.9754034876823425, 0.17569366097450256,
-0.13188815116882324, -0.27350300550460815, 0.3355262577533722,
0.18854671716690063, 2.143237352371216, 0.8527002930641174,
0.09647636860609055, -0.06249098479747772, 0.8268541097640991,
0.5598673224449158, -0.7775934338569641, 0.3339212238788605,
0.17591367661952972, 2.1108040809631348, 1.0702455043792725,

64 Latent Vectors Used in Training Analysis

0.019540296867489815, 1.121282935142517, -1.487319827079773,
-0.2043229192495346, -1.0466426610946655, -1.5772475004196167,
0.10358445346355438, -0.3514097034931183, 0.2421167939901352,
0.6462650895118713, 0.8729978799819946, -0.9275988936424255,
0.17662756145000458, 1.0224436521530151, -0.48255372047424316,
-0.542116641998291, -0.5341827273368835, -0.6412885189056396,
0.035191990435123444, -0.4765148460865021, -0.040874917060136795,
1.1992886066436768, 0.537361741065979, -0.19295910000801086,
0.5936785936355591, 0.7203136086463928, 0.5061110258102417,
1.5191761255264282, -0.4896864891052246, 0.9230629801750183,
-0.6008041501045227, -1.1164305210113525, 0.2577155530452728,
-0.7225574254989624, -0.924393355846405, 1.8736815452575684,
1.012195348739624, -1.4481744766235352, -0.06435244530439377,
0.32154718041419983, 0.5907514095306396, -1.4196633100509644,
0.8279211521148682, -0.29685503244400024, 0.7120362520217896,
-0.20681561529636383, -0.15475818514823914, 0.15530990064144135,
-0.04888802021741867, 0.34295564889907837, 0.12640085816383362,
0.15189151465892792, -1.3638681173324585, -1.6592905521392822,
1.0311496257781982, -1.9556775093078613, -0.1482047438621521,
1.7375658750534058, 2.2039496898651123, -0.6589270234107971,
1.3314379453659058, -0.4497975707054138, 0.5493302345275879,
0.053876012563705444, 0.2600640058517456, 0.8570226430892944,
2.521064281463623, -0.04523999243974686, -0.31052321195602417,
-0.9407292008399963, -0.003390141064301133, 1.5198700428009033,
0.2654098570346832, -0.14413532614707947, 0.5406927466392517,
-1.5476484298706055, 0.645520031452179, -1.1381512880325317,
0.605167806148529, 1.1903902292251587, 1.2194879055023193,
-0.04704220965504646, -1.0913935899734497, 1.0223486423492432,
0.21128413081169128, 0.030614925548434258, 0.3603813350200653,
0.3165828287601471, -0.8975173234939575, -0.639275848865509,
0.6206748485565186, -0.168959379196167, -0.5815512537956238,
1.263188123703003, -0.5647768974304199, -0.13118743896484375,
0.6836482882499695, -0.25280386209487915, -1.0559577941894531,
0.04088050499558449, 1.0751616954803467, -0.552819550037384,
0.23216204345226288, 0.6321074962615967, 0.4733217656612396,
0.2921431362628937, -0.23260068893432617, 1.8261481523513794,
1.0807431936264038, -0.7225019931793213
]

Latent vector used in Figure 8.2:

[
-1.2113046646118164, 0.6303586959838867, -1.4713038206100464,

65

-1.3351988792419434, -0.4896668791770935, 0.13174211978912354,
0.3294970691204071, 0.32642850279808044, -0.48055046796798706,
1.1031602621078491, 2.548506021499634, 0.30063533782958984,
-0.543218195438385, -1.0841293334960938, 1.4612364768981934,
-1.627929925918579, -1.4800710678100586, -1.0630654096603394,
0.3630143702030182, 0.3994666635990143, 0.14565789699554443,
-0.7344775199890137, -0.9872555732727051, 1.8512191772460938,
-1.3437334299087524, 0.853526771068573, 0.8811348080635071,
-0.6521903872489929, 0.5809689164161682, 0.3560802638530731,
0.016046009957790375, 0.40185678005218506, 1.9538429975509644,
-0.4460289478302002, 1.7102055549621582, 0.8944460153579712,
-0.5458323359489441, -0.6418041586875916, -2.052621364593506,
0.3467080593109131, -0.6968749761581421, -0.004699554294347763,
-0.31362661719322205, -1.2601573467254639, 0.697658360004425,
0.3720381557941437, -0.2606133818626404, -0.7613316774368286,
0.12767551839351654, 0.1522265523672104, -1.108310341835022,
-0.6451759338378906, -1.787100911140442, 0.6950071454048157,
-0.5825005173683167, -0.19255627691745758, 1.2356798648834229,
-0.8008244037628174, -0.2808338701725006, 0.8700663447380066,
-1.7343510389328003, -1.4346975088119507, -0.06284128874540329,
-0.5595195293426514, 1.0409702062606812, 0.13654087483882904,
1.8124992847442627, -0.4949057102203369, 0.8339433073997498,
-0.3967777490615845, 1.3932565450668335, 0.30117112398147583,
-0.2569783329963684, -1.3998596668243408, 0.7614684700965881,
0.8895881772041321, -0.39031508564949036, 0.8299045562744141,
0.2927452623844147, -0.6837154626846313, -0.22316285967826843,
-0.7009411454200745, -0.32141852378845215, -0.6802502274513245,
-1.3113828897476196, -1.5171953439712524, 0.628166913986206,
1.1301010847091675, 0.41947686672210693, 0.6914551854133606,
-0.8920358419418335, 0.2698323428630829, -2.215027093887329,
0.8058066964149475, 0.515622079372406, -0.04202818125486374,
-2.835059881210327, 0.3415207266807556, -0.585829496383667,
0.6763635277748108, -0.4266972541809082, 1.095131516456604,
1.24285888671875, 0.29533126950263977, -0.4089600741863251,
-0.6816136240959167, -0.7103906869888306, -0.11576968431472778,
-1.6770185232162476, 1.2439218759536743, 0.8127437233924866,
-0.8698902726173401, -0.716035008430481, -0.5617383718490601,
1.695793628692627, -0.37110382318496704, 0.004497247282415628,
0.14678776264190674, -0.277641624212265, 0.30988118052482605,
-0.7398537397384644, 0.6421766877174377, -0.025866955518722534,
-0.9036566019058228, 0.5111561417579651, 0.8201687335968018,
1.0510227680206299, -0.8726540803909302, -0.8036245703697205,

66 Latent Vectors Used in Training Analysis

-0.18871735036373138, 1.729634165763855, 0.10785476118326187,
-0.6363270878791809, 0.051877859979867935, 2.0020792484283447,
-0.6008415818214417, 0.3244907259941101, 1.1994245052337646,
-1.1465080976486206, -0.930880606174469, -0.9179940819740295,
-0.7409375309944153, -1.0485632419586182, -1.3647245168685913,
0.34897133708000183, -0.5539128184318542, -0.44666504859924316,
1.7612162828445435, 1.0009013414382935, -0.5218213200569153,
1.4748759269714355, -0.683250367641449, -0.08347616344690323,
0.685611367225647, -0.7607735991477966, -3.1045682430267334,
-1.3223273754119873, 0.4691530764102936, -0.5240707993507385,
-0.37024804949760437, -0.396274209022522, -0.11807964742183685,
-0.9285410642623901, 0.3364261984825134, 1.0358314514160156,
0.9010142683982849, 1.1425833702087402, 0.35128119587898254,
0.953509509563446, 0.19746844470500946, 0.9650968313217163,
1.206891655921936, -0.24858546257019043, -0.18955329060554504,
2.187729835510254, 0.8639533519744873, -0.8377084732055664,
-0.1815066933631897, -0.8690583109855652, -0.22122421860694885,
-1.7606292963027954, 0.4089822471141815, -0.08567928522825241,
-0.7367804646492004, -0.11829587072134018, 0.3907356262207031,
-1.3913357257843018, -1.3956661224365234, 0.546488881111145,
-0.30829501152038574, -0.38502684235572815, 1.1338926553726196,
0.047884371131658554, 1.5241358280181885, 0.8959890007972717,
-2.4688668251037598, -0.2654874622821808, 1.0005842447280884,
-0.03324358910322189, 1.4986847639083862
]

C. User Testing: Questionnaire
The following pages are the questionnaire used in the user testing of DeepIE3D.

Deep Interactive Evolutionary 3D
Modelling: Planes
https://adrianwesth.dk

Navnet og billedet, der er knyttet til din Google-konto, registreres, når du uploader �ler og indsender denne
formular. Er zniwalla@gmail.com ikke din? Skift konto

Side 1 af 5

Indsend aldrig adgangskoder via Google Analyse.

Dette indhold er hverken oprettet eller godkendt af Google. Rapportér misbrug - Servicevilkår

NÆSTE

Deep Interactive Evolutionary 3D
Modelling: Planes
Navnet og billedet, der er knyttet til din Google-konto, registreres, når du uploader �ler og indsender denne
formular. Er zniwalla@gmail.com ikke din? Skift konto

*Skal udfyldes

Experiment 1: Part 1

https://adrianwesth.dk

Very unsatisfactory

1 2 3 4 5 6 7 8 9 10

Very satisfactory

Very unsatisfactory

1 2 3 4 5 6 7 8 9 10

Very satisfactory

Which iteration produced the best 3D model? *
Vælg

On a scale from 1 to 10, how satisfactory was the best 3D model? *

On a scale from 1 to 10, how satisfactory was the best 3D model in the
last iteration? *

Please upload screenshot of best 3D model *

TILFØJ FIL

Please upload screenshot of best 3D model from �nal iteration *

TILFØJ FIL

Which iteration produced the best 3D-model? *
Vælg

Very unsatisfactory

1 2 3 4 5 6 7 8 9 10

Very satisfactory

Very unsatisfactory

1 2 3 4 5 6 7 8 9 10

Very satisfactory

Side 2 af 5

Indsend aldrig adgangskoder via Google Analyse.

Dette indhold er hverken oprettet eller godkendt af Google. Rapportér misbrug - Servicevilkår

On a scale from 1 to 10, how satisfactory was the best 3D model? *

On a scale from 1 to 10, how satisfactory was the best 3D model in the
last iteration? *

Please upload screenshot of best 3D model *

TILFØJ FIL

Please upload screenshot of best 3D model from �nal iteration *

TILFØJ FIL

TILBAGE NÆSTE

 Analyse

Deep Interactive Evolutionary 3D
Modelling: Planes
Navnet og billedet, der er knyttet til din Google-konto, registreres, når du uploader �ler og indsender denne
formular. Er zniwalla@gmail.com ikke din? Skift konto

*Skal udfyldes

Experiment 1: Part 2

https://adrianwesth.dk

Very unsatisfactory

1 2 3 4 5 6 7 8 9 10

Very satisfactory

Very unsatisfactory

1 2 3 4 5 6 7 8 9 10

Very satisfactory

Which iteration produced the best 3D model? *
Vælg

On a scale from 1 to 10, how satisfactory was the best 3D model? *

On a scale from 1 to 10, how satisfactory was the best 3D model in the
last iteration? *

Please upload screenshot of best 3D model *

TILFØJ FIL

Please upload screenshot of best 3D model from �nal iteration *

TILFØJ FIL

Which iteration produced the best 3D-model? *
Vælg

Very unsatisfactory

1 2 3 4 5 6 7 8 9 10

Very satisfactory

Very unsatisfactory

1 2 3 4 5 6 7 8 9 10

Very satisfactory

Side 3 af 5

Indsend aldrig adgangskoder via Google Analyse.

Dette indhold er hverken oprettet eller godkendt af Google. Rapportér misbrug - Servicevilkår

On a scale from 1 to 10, how satisfactory was the best 3D model? *

On a scale from 1 to 10, how satisfactory was the best 3D model in the
last iteration? *

Please upload screenshot of best 3D model *

TILFØJ FIL

Please upload screenshot of best 3D model from �nal iteration *

TILFØJ FIL

TILBAGE NÆSTE

 Analyse

Deep Interactive Evolutionary 3D
Modelling: Planes
Navnet og billedet, der er knyttet til din Google-konto, registreres, når du uploader �ler og indsender denne
formular. Er zniwalla@gmail.com ikke din? Skift konto

*Skal udfyldes

Experiment 2

https://adrianwesth.dk

Very unsatisfactory

1 2 3 4 5 6 7 8 9 10

Very satisfactory

Which iteration produced the best 3D model? *
Vælg

On a scale from 1 to 10, how satisfactory was the best 3D model? *

Very unsatisfactory

1 2 3 4 5 6 7 8 9 10

Very satisfactory

Very unsatisfactory

1 2 3 4 5 6 7 8 9 10

Very satisfactory

Very unsatisfactory

1 2 3 4 5 6 7 8 9 10

Very satisfactory

On a scale from 1 to 10, how satisfactory was the best 3D model in the
last iteration? *

Please upload screenshot of best 3D model *

TILFØJ FIL

Please upload screenshot of best 3D model from �nal iteration *

TILFØJ FIL

Which iteration produced the best 3D-model? *
Vælg

On a scale from 1 to 10, how satisfactory was the best 3D model? *

On a scale from 1 to 10, how satisfactory was the best 3D model in the
last iteration? *

Side 4 af 5

Indsend aldrig adgangskoder via Google Analyse.

Dette indhold er hverken oprettet eller godkendt af Google. Rapportér misbrug - Servicevilkår

Please upload screenshot of best 3D model *

TILFØJ FIL

Please upload screenshot of best 3D model from �nal iteration *

TILFØJ FIL

TILBAGE NÆSTE

 Analyse

Deep Interactive Evolutionary 3D
Modelling: Planes
Navnet og billedet, der er knyttet til din Google-konto, registreres, når du uploader �ler og indsender denne
formular. Er zniwalla@gmail.com ikke din? Skift konto

*Skal udfyldes

General Questions

Exhausting

1 2 3 4 5 6 7 8 9 10

Fun

Hard

1 2 3 4 5 6 7 8 9 10

Easy

How was the overall user experience? *

How would you describe the ease of using the web app? *

What strategy did you use to create the models in experiment 1? (What
dictated which models you picked?) *

Dit svar

What strategy did you use to create the models in experiment 2? (What
dictated which models you picked?) *

Dit svar

Did the user guide cover all features of the web application? If not, which
were unsatisfactory and why? *

Dit svar

Side 5 af 5

Indsend aldrig adgangskoder via Google Analyse.

Dette indhold er hverken oprettet eller godkendt af Google. Rapportér misbrug - Servicevilkår

Is the 'Normal mode' intuitive? Is it hard to use? *

Dit svar

Is the 'Advanced mode' intuitive? Is it hard to use? *

Dit svar

Which features is the web application missing? (If any) *

Dit svar

TILBAGE SEND

 Analyse

D. User Testing: Answers
The following pages are the answers from the questionnaire used in the user testing of
DeepIE3D. Some pages are distorted, but this is due to Google Forms - the relevant
data can be seen as graphs in Section 7.2 and the written answers are luckily not
distorted.

Deep Interactive Evolutionary 3D
Modelling: Planes
17 responses

Experiment 1: Part 1

Which iteration produced the best 3D model?
17 responses

On a scale from 1 to 10, how satisfactory was the best 3D model?
17 responses

1
2
3
4
5
6
7
8

1/2

11.8%

11.8%

11.8%

11.8%11.8%

17.6%

11.8%

11.8%

1 2 3 4 5 6 7 8 9 10
0

2

4

6

0 (0%)0 (0%)0 (0%) 0 (0%)0 (0%)0 (0%) 0 (0%)0 (0%)0 (0%) 0 (0%)0 (0%)0 (0%) 0 (0%)0 (0%)0 (0%)

3 (17.6%)3 (17.6%)3 (17.6%)3 (17.6%)3 (17.6%)3 (17.6%)

5 (29.4%)5 (29.4%)5 (29.4%)6 (35.3%)6 (35.3%)6 (35.3%)

0 (0%)0 (0%)0 (0%)

On a scale from 1 to 10, how satisfactory was the best 3D model in the
last iteration?
17 responses

Please upload screenshot of best 3D model
17 responses

Please upload screenshot of best 3D model from �nal iteration
17 responses

Which iteration produced the best 3D-model?
17 responses

1 2 3 4 5 6 7 8 9 10
0

2

4

6

0 (0%)0 (0%)0 (0%)

1 (5.9%)1 (5.9%)1 (5.9%)

0 (0%)0 (0%)0 (0%) 0 (0%)0 (0%)0 (0%)

2 (11.8%)2 (11.8%)2 (11.8%)

5 (29.4%)5 (29.4%)5 (29.4%)

3 (17.6%)3 (17.6%)3 (17.6%)

5 (29.4%)5 (29.4%)5 (29.4%)

1 (5.9%)1 (5.9%)1 (5.9%)

0 (0%)0 (0%)0 (0%)

On a scale from 1 to 10, how satisfactory was the best 3D model?
17 responses

On a scale from 1 to 10, how satisfactory was the best 3D model in the
last iteration?
17 responses

1
2
3
4
5
6
7
8

23.5%29.4%

17.6%

1 2 3 4 5 6 7 8 9 10
0

2

4

6

8

0 (0%)0 (0%)0 (0%) 0 (0%)0 (0%)0 (0%) 0 (0%)0 (0%)0 (0%) 0 (0%)0 (0%)0 (0%)

2 (11.8%)2 (11.8%)2 (11.8%)

1 (5.9%)1 (5.9%)1 (5.9%)

4 (23.5%)4 (23.5%)4 (23.5%)

7 (41.2%)7 (41.2%)7 (41.2%)

3 (17.6%)3 (17.6%)3 (17.6%)

0 (0%)0 (0%)0 (0%)

Please upload screenshot of best 3D model
17 responses

Please upload screenshot of best 3D model from �nal iteration
17 responses

Experiment 1: Part 2

Which iteration produced the best 3D model?
17 responses

On a scale from 1 to 10, how satisfactory was the best 3D model?
17 responses

1
2
3
4
5
6
7
8

1/2

11.8%

29.4%

23.5%

11.8%

On a scale from 1 to 10, how satisfactory was the best 3D model in the
last iteration?
17 responses

Please upload screenshot of best 3D model
17 responses

Please upload screenshot of best 3D model from �nal iteration
17 responses

1 2 3 4 5 6 7 8 9 10
0

2

4

6

8

0 (0%)0 (0%)0 (0%) 0 (0%)0 (0%)0 (0%) 0 (0%)0 (0%)0 (0%) 0 (0%)0 (0%)0 (0%) 0 (0%)0 (0%)0 (0%) 0 (0%)0 (0%)0 (0%)

4 (23.5%)4 (23.5%)4 (23.5%)4 (23.5%)4 (23.5%)4 (23.5%)

7 (41.2%)7 (41.2%)7 (41.2%)

2 (11.8%)2 (11.8%)2 (11.8%)

1 2 3 4 5 6 7 8 9 10
0

2

4

6

0 (0%)0 (0%)0 (0%)

1 (5.9%)1 (5.9%)1 (5.9%)

0 (0%)0 (0%)0 (0%) 0 (0%)0 (0%)0 (0%) 0 (0%)0 (0%)0 (0%) 0 (0%)0 (0%)0 (0%)

6 (35.3%)6 (35.3%)6 (35.3%)5 (29.4%)5 (29.4%)5 (29.4%)5 (29.4%)5 (29.4%)5 (29.4%)

0 (0%)0 (0%)0 (0%)

Which iteration produced the best 3D-model?
17 responses

On a scale from 1 to 10, how satisfactory was the best 3D model?
17 responses

On a scale from 1 to 10, how satisfactory was the best 3D model in the
last iteration?
17 responses

1
2
3
4
5
6
7
8

1/2

11.8%

58.8%

11.8%

1 2 3 4 5 6 7 8 9 10
0

2

4

6

0 (0%)0 (0%)0 (0%) 0 (0%)0 (0%)0 (0%) 0 (0%)0 (0%)0 (0%)

1 (5.9%)1 (5.9%)1 (5.9%) 1 (5.9%)1 (5.9%)1 (5.9%)

5 (29.4%)5 (29.4%)5 (29.4%)

1 (5.9%)1 (5.9%)1 (5.9%)

4 (23.5%)4 (23.5%)4 (23.5%)

3 (17.6%)3 (17.6%)3 (17.6%)

2 (11.8%)2 (11.8%)2 (11.8%)

Please upload screenshot of best 3D model
17 responses

Please upload screenshot of best 3D model from �nal iteration
17 responses

Experiment 2

Which iteration produced the best 3D model?
17 responses

1 2 3 4 5 6 7 8 9 10
0

2

4

6

0 (0%)0 (0%)0 (0%) 0 (0%)0 (0%)0 (0%) 0 (0%)0 (0%)0 (0%)

2 (11.8%)2 (11.8%)2 (11.8%)

0 (0%)0 (0%)0 (0%)

6 (35.3%)6 (35.3%)6 (35.3%)

1 (5.9%)1 (5.9%)1 (5.9%)

3 (17.6%)3 (17.6%)3 (17.6%)3 (17.6%)3 (17.6%)3 (17.6%)

2 (11.8%)2 (11.8%)2 (11.8%)

On a scale from 1 to 10, how satisfactory was the best 3D model?
17 responses

On a scale from 1 to 10, how satisfactory was the best 3D model in the
last iteration?
17 responses

1
2
3

35.3%

1 2 3 4 5 6 7 8 9 10
0

2

4

6

0 (0%)0 (0%)0 (0%) 0 (0%)0 (0%)0 (0%) 0 (0%)0 (0%)0 (0%) 0 (0%)0 (0%)0 (0%)

2 (11.8%)2 (11.8%)2 (11.8%)

1 (5.9%)1 (5.9%)1 (5.9%) 1 (5.9%)1 (5.9%)1 (5.9%)

4 (23.5%)4 (23.5%)4 (23.5%)

3 (17.6%)3 (17.6%)3 (17.6%)

6 (35.3%)6 (35.3%)6 (35.3%)

1 2 3 4 5 6 7 8 9 10
0

1

2

3

4

0 (0%)0 (0%)0 (0%)

1 (5.9%)1 (5.9%)1 (5.9%)

0 (0%)0 (0%)0 (0%) 0 (0%)0 (0%)0 (0%)

3 (17.6%)3 (17.6%)3 (17.6%)

1 (5.9%)1 (5.9%)1 (5.9%)

4 (23.5%)4 (23.5%)4 (23.5%)
3 (17.6%)3 (17.6%)3 (17.6%)3 (17.6%)3 (17.6%)3 (17.6%)

2 (11.8%)2 (11.8%)2 (11.8%)

Please upload screenshot of best 3D model
17 responses

Please upload screenshot of best 3D model from �nal iteration
17 responses

Which iteration produced the best 3D-model?
17 responses

On a scale from 1 to 10, how satisfactory was the best 3D model?
17 responses

1
2
3
4
5
6
7
8

1/2

11.8%

11.8%

29.4%

17.6%

17.6%

On a scale from 1 to 10, how satisfactory was the best 3D model in the
last iteration?
17 responses

Please upload screenshot of best 3D model
17 responses

Please upload screenshot of best 3D model from �nal iteration
17 responses

General Questions

4

6
5 (29.4%)5 (29.4%)5 (29.4%)

1 2 3 4 5 6 7 8 9 10
0

1

2

3

0 (0%)0 (0%)0 (0%)

1 (5.9%)1 (5.9%)1 (5.9%) 1 (5.9%)1 (5.9%)1 (5.9%)

0 (0%)0 (0%)0 (0%)

2 (11.8%)2 (11.8%)2 (11.8%)

3 (17.6%)3 (17.6%)3 (17.6%)

2 (11.8%)2 (11.8%)2 (11.8%)2 (11.8%)2 (11.8%)2 (11.8%)

3 (17.6%)3 (17.6%)3 (17.6%)3 (17.6%)3 (17.6%)3 (17.6%)

How was the overall user experience?
17 responses

How would you describe the ease of using the web app?
17 responses

What strategy did you use to create the models in experiment 1? (What
dictated which models you picked?)

17 responses

1 2 3 4 5 6 7 8 9 10
0

2

4

6

0 (0%)0 (0%)0 (0%) 0 (0%)0 (0%)0 (0%)

1 (5.9%)1 (5.9%)1 (5.9%)

0 (0%)0 (0%)0 (0%) 0 (0%)0 (0%)0 (0%)

1 (5.9%)1 (5.9%)1 (5.9%)

5 (29.4%)5 (29.4%)5 (29.4%)6 (35.3%)6 (35.3%)6 (35.3%)

2 (11.8%)2 (11.8%)2 (11.8%)2 (11.8%)2 (11.8%)2 (11.8%)

1 2 3 4 5 6 7 8 9 10
0

2

4

6

8

0 (0%)0 (0%)0 (0%) 0 (0%)0 (0%)0 (0%) 0 (0%)0 (0%)0 (0%) 0 (0%)0 (0%)0 (0%)

1 (5.9%)1 (5.9%)1 (5.9%)

3 (17.6%)3 (17.6%)3 (17.6%)3 (17.6%)3 (17.6%)3 (17.6%)

7 (41.2%)7 (41.2%)7 (41.2%)

2 (11.8%)2 (11.8%)2 (11.8%)

1 (5.9%)1 (5.9%)1 (5.9%)

Chose the ones that looked the most in regards to different features (pointy nose of the plane, edgy wings,
motor-location)

I picked the ones that looked most like the pictures, but choose several ones if they were equally good

I chose the models that were most similar to the picture. For an example I chose the models that had some
kind of propella (plane 2) or had motors in the back (plane 1)

Hearted the one that looked the most like the result I wanted. If none looked like the goal I didn't choose
any. In advanced mode I locked the plane.

Whatever looked most like the pictures. Especially distinct features as wings and propels

I looked at speci�c features for the plane (pointy front, jet motors at the back of the plane etc.)

Clicked on the plane that resembled the most

Using hearts

Feature similary, eg. wing/engine position and size

Looked for Engine location, engine shape, front propeller and width of wings. in normal mode "liked" all
planes with these features. in advanced, tried to mutate planes that had some of the different features, to
combine them to a plane that had all features.

Picked the ones which had some resemblance with target

First few iterations, pick the plane that looked the most like the desired plane. When options to choose
from chose the ones with desired features.

What looked most like a real plane

I just tried something out and chose the models that resembled the model the most.

Tried to improve the chosen planes

I picked the once that looked most like the plain

Choose the ones resembling the most

What strategy did you use to create the models in experiment 2? (What
dictated which models you picked?)
17 responses

Chose the ones that looked the most action packed.

I lways kept the best one and mutated it, but also crossed it if the others had features that good make it
more correct

If it was most similar to an airbus or a very thin plane.

I just went for my gut feeling. I like glitchy aesthetics.

See above.

Kind of the same one - looking for speci�c features

Clicked on the plane that resembled the most

mutating and crossovers

Feature similary, eg. wing/engine position and size

In normal mode I "Liked" planes that had different interesting features, to create a plane with a combination
of these. For advanced I tried to mutate planes with many features, as well as crossover planes that had
multiple interesting features, to make a combination.

Mutated 1-3 which looked promising

Tried to produce weird planes. Pciked the weird ones an mutated them a lot.

What looked most like a real plane

I went with the �ow and tried to get inspired while sticking to my creative instinct.

It should be able to �y!

I liked to combain lains where I didnt know how the result would be

Should look like a plane - the wings are a must

Did the user guide cover all features of the web application? If not,
which were unsatisfactory and why?
17 responses

Yes

The user guide was a bit hard to follow

It did, but the language was di�cult

Yes.

Didn't read the user guide.

It did, though it might require some re-wording as some of it was quite hard to wrap your head around

It was pretty ful�lling, yes

Could use examples/pictures

It did

Might have been a bit more detailed, but them it may have been a bit too long

I think so.

Dont know

I think it covered all.

-

I did not read it

Is the 'Normal mode' intuitive? Is it hard to use?
17 responses

Intuitive

Easy to use, very intuitive!

WIthout an oral introduction no..

Yes it's intuitive.

It's pretty easy to use when you know what to do, but there is some clutter and a lot of buttons I never used.

Very easy

I would say its pretty intuitive and not very hard to use

Very intuitive

It is simple and intuitive.

I think it is very intuitive

You do not really know what is happening behind the scenes. It is faster to use, as you dont have to decide
on many different options.

no

it is intuitive.

Yes

It was simple

Yes, logical

Is the 'Advanced mode' intuitive? Is it hard to use?
17 responses

A bit harder to use. Had to think for longer over my choices.

Yes, after I read the user guide it was okay

It's kind of hard to use - it's di�cult to �gure out how much you can mutate.

I don't �nd advanced mode very intuitive but it helped that I had used it before.

A bit less easy, but after one try it's easy enough

This mode is a little harder to understand because it has more features but its not hard per se

Intuitive

a little harder to use, but still good.

Crossover requires lots of extra keypresses compared to everything else

Also pretty intuitive

After some iterations it became �ne to use

It was a little hard the �rst time. Second and third it provided a lot of info of what was happening. Took a
little longer.

A little more advanced

A little harder but still pretty intuitive - especially after having tried the normal mode.

Yeah

It was a little challenging

Yes, �ne symbols

Which features is the web application missing? (If any)
17 responses

I don't know

A language not made for computer-scientists!!

A dummy guide.

3D model print out of the USB-port.

Colors, picture without background, ?????

It works pretty well overall, i wouldn't know what's missing

Dunno

It would be better if the mutations would start from 1 instead of 9, so if you lock a �gure you know it will be
the �rst model in the next iteration.

Keybindings

None that I can think of.

Could I model something else than planes?

The keep model feature in the advanced feature is very useful when recreating planes, but it is not present
in the normal mode.

Advanced mode clearer description of next iteration. Maybe the planes of crossover

Would it be possible to have a picture continuously of ones favorite?

The �nal plane should be �nished somehow

I would not know

Nope

This content is neither created nor endorsed by Google. Report Abuse - Terms of Service

 Forms

E. Network Gradients

Gradients and gradient penalty throughout the training process of the final PacWGAN-
GP2 used in DeepIE3D.

(a) Layer 1 (b) Layer 2 (c) Layer 3

(d) Layer4 (e) Layer 5

Figure E.1: Gradients for the layers of the critic.

(a) Layer 1 (b) Layer 2 (c) Layer 3

(d) Layer4 (e) Layer 5

Figure E.2: Gradients for the layers of the generator.

99

Figure E.3: Gradient penalty

	Introduction
	Background & Related Work
	Generative Adversarial Networks
	Distances
	Original Generative Adversarial Networks
	Deep Convolutional Generative Adversarial Networks
	3D Generative Adversarial Networks
	Wasserstein Generative Adversarial Networks
	PacGAN

	Evolution
	Deep Interactive Evolution
	Novelty Search

	Data
	Approach & Implementation
	Generative Adversarial Networks
	Architecture
	Training Ratios
	Loss Functions
	Modes and Overfitting
	Optimizer
	Hyperparameters

	Evolution

	Web Application
	Technologies and Frameworks
	Evolution
	User Interface

	User Testing
	Motivation
	Approach

	Results
	Evolution
	Mutation
	Crossover
	Novelty Search

	User Testing
	3D Printing

	Analysis & Discussion
	Generative Adversarial Networks
	Training
	3D Model Distribution

	Evolution
	Mutation & Crossover
	Novelty Search

	User Testing

	Future Work
	Conclusion
	Bibliography
	Behavioral Novelty Search
	Latent Vectors Used in Training Analysis
	User Testing: Questionnaire
	User Testing: Answers
	Network Gradients

